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Abstract

Repeated Cross-Sectional (RCS) data measures a phe-

nomenon by repeatedly sampling new cases from a popula-

tion at successive measurement moments. It allows for ana-

lyzing societal trends without the need to follow individuals.

To gain a deeper understanding of these trends, we propose

EMM-RCS, an Exceptional Model Mining instance designed

to find subgroups displaying exceptional trend behavior in

RCS data. We build quality measures on the standard error,

finding various types of exceptionalities within trends (ex-

ceptional flattening, slope, deviation from the norm). Ad-

ditionally, EMM-RCS can handle practical RCS data prob-

lems, including uneven spacing of measurements over time,

fluctuating sample sizes, and missing data.

1 Introduction

A deeper understanding of societal trends helps policy
makers, government institutions and decision makers to
take the right course of action. For instance, consider
the trend in the percentage of Dutch adolescents that
consumed alcohol in the last 4 weeks, which has de-
creased from 57% in 2003 to 26% in 2015 and has flat-
tened since then [19, 23] (see black line in Figure 3a
in Section 7.1). Since adolescent alcohol consumption
has short-term risks (e.g., injuries, violence) and long-
term risk of adult alcohol dependence [14], the Dutch
government formulated a new goal that by 2040, the
percentage of Dutch adolescents that consumed alco-
hol in the last 4 weeks must have further decreased to
15% [6]. Policy makers are now developing campaigns
specifically targeted at the right group of adolescents.

For developing such strategies, it is valuable to gain
a deeper understanding of the interplay between various
socio-demographic factors such as gender, school level,
family situation, and ethnicity [10, 14]. In particular,
we want to know the trends in alcohol use in certain
subgroups of the population, and where and when those
trends are deviating from the general, population trend.
In this paper, we develop EMM-RCS: a new instance
of the framework of Exceptional Model Mining (EMM)
[5, 11] that seeks subgroups with exceptional societal
trends in Repeated Cross-Sectional data.

∗Eindhoven University of Technology, the Netherlands, {r.m.
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EMM is a local pattern mining framework seeking
subsets of the dataset that behave somehow exception-
ally. Here, exceptional behavior is measured in terms
of parameters of a model class over target attributes.
Another set of attributes is used to describe subgroups
as a conjunction of attribute-value conditions. EMM is
the data mining method that is tailored best towards
the task of analyzing societal trends: on the one hand,
the evaluation within its search strategy allows to find
a variety of trend deviations; on the other hand, explor-
ing the search space of subgroups that can be concisely
described ensures that the results are interpretable for
domain experts, making the translation of data mining
results to policy decisions relatively straightforward.

A trend analysis is done by collecting data with a
Repeated Cross-Sectional (RCS) research design, also
called a trend design [2]. RCS data is obtained by sam-
pling new cases from a population at successive occa-
sions. It differs from time series where multiple mea-
surements are taken per case with very short time in-
tervals, and from longitudinal data where the same peo-
ple are followed through time (see Figure 1). Instead,
RCS research collects the same information from differ-
ent cases and therefore allows for the analysis of change
over time without the need to follow people. This can
be useful in case of dropout risk, or when following par-
ticipants is not possible (e.g., adolescents grow older).

time series

longitudinal

RCS

CS

Figure 1: Schematic overview of various types of data.
In time series, multiple measurements are sampled per
case with very short time intervals. In longitudinal
data, sampling is done with long intervals in a relatively
long period of time. Repeated cross-sectional (RCS)
data is collected from new samples at each measurement
occasion, resulting in varying sample sizes.
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We cannot directly apply existing instances of EMM
to RCS data for a few reasons. Foremost, no model class
and quality measure exist that are suitable for analyzing
trends. There is some work on EMM for sequential data
(e.g. [17]) but as in time series or longitudinal data,
there the sequence is known per case and the sample size
is fixed. Instead, in RCS data, a case contributes to the
trend at just one measurement occasion. Consequently,
the entire trend is estimated on data with varying
sample sizes; an EMM model class and quality measure
would have to be able to handle such fluctuations. In
addition, RCS research often has a long-term focus
where the interest is in estimating trends for years or
decades. Thus, the distribution of descriptive attributes
is likely to change over time as well. For instance,
the proportion of Dutch adolescents joining secondary
school at a high level has increased [3]. On the one
hand, EMM should allow for the forming of subgroups
even if there is a strong imbalance in the distribution of
descriptors, but on the other hand, EMM should also
account for the resulting trend estimate uncertainty.

We propose a generic, flexible quality measure that
uses the standard error of the trend estimate to account
for both fluctuating sample sizes, varying descriptor
distributions and uncertainty of trend estimates. By
using the standard error we additionally direct the
search away from small subgroups. Our quality measure
can be used for any trend estimate for which a standard
error exists (or can be calculated using bootstrapping).

Moreover, the generality of our quality measure
allows to define multiple types of trend deviations as
exceptional behavior. This is important from a domain
perspective. For instance, when analyzing alcohol
usage trends, domain experts are interested in finding
subgroups of adolescents who drink more, who have a
stronger or weaker decrease, and who have many flat
parts in the trend. These different types of deviation
may provide different kinds of information, such as to
whom the campaign should be targeted, how to design
the campaign, and who is likely not to be influenced.

In sum, our main contributions are:

1. an EMM model class for RCS data, including a
way to handle missing data in descriptive space and
irregular measurement occasions in target space;

2. a generic quality measure that can be adapted for
finding various exceptionalities in trends;

3. the use of standard error to handle fluctuating
sample sizes, varying descriptor distributions, and
uncertainty of trend estimates, while concurrently
directing the search away from small subgroups.

2 Related Work

A Repeated Cross-Sectional (RCS) research design is
used in many studies, such as the European School Sur-
vey Project on Alcohol and Other Drugs [16], British So-
cial Attitudes (cf. https://bsa.natcen.ac.uk/), and
Monitoring the Future [9]. In the respective domains,
the interplay between socio-demographic factors is in-
vestigated using global analysis techniques. For in-
stance, regarding alcohol use among Dutch adolescents,
several, separate logistic regression models are employed
to test for significant interaction effects between sur-
vey year as dummy variable and each of the socio-
demographic factors [14]. Such global analysis meth-
ods do not allow to explore more than a few socio-
demographic factors or to find non-linear effects. Also,
variables have to be categorized beforehand and indi-
viduals are nested into distinct groups.

Instead, we use the framework of Exceptional Model
Mining (EMM) [5, 11] to search for subgroups with
exceptional trends. EMM poses no restrictions on
the number of descriptive attributes and the type of
interaction between those attributes. To the best of our
knowledge, we are the first to analyze RCS data using
local pattern mining. The vast majority of data mining
(and hence also EMM) methods are developed for
observational data that is available but not specifically
collected with a certain research design, maybe except
for a few directions such as uplift modeling that uses
experimental data [20] and an EMM model class for
A/B tests [4]. Note that EMM model classes exist for
sequential data [15, 21]. Similarly, methods exist to
detect time series anomalies or discords [13]. However,
in both sequential and time series data the repeated
measurements are taken within cases (cf. Figure 1),
which requires different methods than analyzing change
over time in RCS data (where cases only contribute to
the trend at one measurement occasion).

We propose a generic quality measure that builds
on the standard error of the trend estimate. The stan-
dard error has been proposed before in an interesting-
ness measure for subgroup discovery (SD) [7] with a
numerical target [12], where it is called a t-score since
it evaluates the mean estimate of a target variable. We
use the concept of standard error more flexibly by calcu-
lating a z-score of any user-defined trend estimate and
using it to evaluate an entire trend instead of just one
estimate or target attribute. The reader should not con-
fuse our notion of a z-score with what [18] propose as a
variant of the t-score and call z-score; they combine the
standard deviation of the target attribute in the entire
dataset with the size of the subgroup, which is related
to but not the same as standard error.
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3 Preliminaries

Repeated Cross-Sectional (RCS) data originate from a
quantitative research design where measurements are
taken at several occasions, each from a new sample
of cases [2]. One can see an RCS dataset Ψ as a
bag of datasets Ωxt where each dataset is collected at
measurement occasion xt ∈ T = {x1, . . . , xt, . . . , xT }.
For instance, the Health Behaviour in School-aged
Children study (HBSC) [23] collects data with 4-year
intervals. In Section 7.1, we use its data from 2005 to
2017; hence, T = {05, 09, 13, 17}. In RCS data, the
time interval between xt and xt+1 can be both regular
and irregular. The former makes trend analysis easier.

The goal is to analyze the change over time of a
population parameter µ. Conform statistical theory, for
a random variable (RV) Y , each sampled value yi in the
dataset represents one of the values Y 1, Y 2, ..., Y N in
the population. An estimator uses the sampled values
to estimate the parameter. For instance, Y can be used
as a point estimator of the mean of a population and
y is its point estimate [1]. An estimator performs well
if it produces unbiased and precise estimates and its
performance depends largely on the sampling design [1].
In this paper, we only use unbiased estimators. The
variance of an estimator is an indicator of the amount
of variation in the possible outcomes of the estimator.
We will use estimators that estimate this variance using
the sampled values. Regarding the sampling design, we
will assume that every case i has the same probability of
being included in the sample with inclusion probability
πi = nxt/Nxt where nxt

is the sample size and Nxt
the

population size at occasion xt ∈ T . Our method can be
extended to other sampling designs.

3.1 Exceptional Model Mining Exceptional
Model Mining (EMM) [5, 11] seeks subgroups in a
dataset that somehow behave exceptionally. Here, the
dataset Ω is defined as a bag of N records r ∈ Ω of
the form r = (a1, . . . , ak, `1, . . . , `m); we distinguish k
descriptive attributes and m target attributes. The
former are used to form interpretable subgroups by
deploying a rule-based description language using con-
junctions of attribute-value conditions. For instance, a
subgroup of adolescents can be described as 11 ≤ age
≤ 15 ∧ school year = 4 ∧ lives with both parents = yes
(cf. Section 7.1).

The choice of model over the target attributes is
called the model class. Next, a quality measure quanti-
fies how different the model in the subgroup is from the
model in a reference group (often the entire dataset).
EMM searches through the space of possible subgroups
and outputs the top-q most exceptional subgroups it
encounters.

4 Exceptional Model Mining for Repeated
Cross-Sectional Data (EMM-RCS)

RCS data does not follow the format of Section 3.1. We
therefore redefine our notion of data as follows:

Definition 4.1. (RCS data) An RCS dataset Ψ =
(Ωx1

, . . . ,Ωxt
, . . . ,ΩxT

) is an ordered bag of T datasets,
where each Ωxt is collected at measurement occasion xt
for xt ∈ T . Every Ωxt is a bag of records rxt ∈ Ωxt of
the form rxt

= (a1, . . . , ak, `1, . . . , `m). The dataset size

is nΨ =
∑T

t=1 nxt
.

The main difference between the general framework of
EMM and EMM-RCS is the simple addition of a time
indicator xt for record r and dataset Ω. However,
the important consequence is that record rixt

is only
measured at occasion xt and its values are not known
for other measurement occasions. Consequently, the
sample sizes differ per occasion; nxt

6= nxt′ (t 6= t′).
Definition 4.1 assumes that attribute aj exists for

all xt ∈ T . In practice, not all RVs will be sampled at
every occasion. We use k and m to denote the number
of unique descriptive and target attributes in the entire
RCS dataset Ψ; any attribute aj may be absent at any
occasion xt ∈ T .

4.1 Descriptive space Denoting the collective do-
main of the descriptive attributes (a1, a2, . . . , ak) by
A, a description formally is a function D : A 7→
{0, 1}. A record rixt

is covered by D if and only if
D(ai1, a

i
2, . . . , a

i
k) = 1. We define a subgroup as follows:

Definition 4.2. (Subgroup) The subgroup corre-
sponding to a description D is the bag of records
SGD ⊆ Ψ that D covers:

SGD = {rixt
∈ Ωxt

| D(ai1, . . . , a
i
k) = 1,Ωxt

∈ Ψ}.

A description D thus collects records from all measure-
ment occasions, which allows to estimate the trend in
the subgroup. Henceforth, we distinguish the entire
dataset from a subgroup by superscripts Ψ and SG.
Then, the subgroup size is nSG and its coverage nSG

/nΨ.
A complication is that the distribution of attribute

aj may vary over time. For instance, in the Netherlands,
the number of adolescents with a non-native background
fluctuates [3]. A condition on ethnic group may there-
fore result in a very small sample for a particular mea-
surement occasion. Furthermore, value aj may not be
available for record rixt

; whether or not record rixt
is

covered by a description is undefined. Values may be
missing because attributes were removed from or added
to the data collection, or because an attribute may not
be applicable to certain respondents. The former type
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results in missing values for all i ∈ nxt
records rixt

at
occasion xt. The second type makes that value aj could
be missing for a specific record rixt

, but be observed for

another record ri
′

xt
at the same occasion xt (i 6= i′).

We decide for two things. On the one hand, we
allow for subgroup SG to have a different number of
observed occasions than the entire dataset, up to a
user-defined minimum constraint cocc. We then say
that TSG

/TΨ ≥ cocc, which allows to form subgroups
on descriptive attributes that are sampled at many
but not all occasions. On the other hand, we define
a new refinement condition for incomplete attributes.
The canonical EMM description language (cf. Section
3.1) uses conjunctions of conditions on single attributes.
During the search, a refinement operator η builds a
new set of descriptions by looping over all descriptive
attributes and adding conditions to existing descriptions
(cf. [5, Section 4.1]). We add a condition where the
attribute-value pair is missing.

Definition 4.3. (Refining incomplete attribute)
For an incomplete descriptive attribute aj, construct a
response indicator Raj ∈ {0, 1} with Raj = 1 if a value
is observed and Raj = 0 if a value is missing. Then
add D ∩ (Raj

= 0) to the set of descriptions η(D).

See [22, Section 5] for a discussion why popular missing
data methods such as dropping incomplete cases or
missing value imputation are not sufficient for RCS
data, and a demonstration of the working of Definition
4.3 in an experiment.

Refinement strategies exist for binary, numerical,
and nominal descriptive attributes [5]. In RCS data,
distinguishing nominal from ordinal attributes is prac-
tically relevant. Hence, we define a refinement strategy
for ordinal attributes.

Definition 4.4. (Refining ordinal attribute)
For an ordinal attribute aj, order the unique values of
aj; this gives a list of ordered values w1, . . . , wm. Then,
add {D ∩ (aj ≤ wh), D ∩ (aj > wh)}m−1

h=1 to the set of
descriptions η(D).

4.2 Quality measure We analyze trends as a model
class and aim to find subgroups with exceptional de-
viations in that trend. For each description D in de-
scription language D, a quality measure quantifies the
exceptionality of the trend in the subgroup covered by
that description. The top-q EMM task is to find the q
best-scoring subgroups for that quality measure.

Definition 4.5. (Quality measure) A quality mea-
sure is a function ϕ : D 7→ R that assigns a numeric
value to a description D.

We propose the following quality measure for finding
subgroups with exceptional trends:

ϕRCS(D) = f ({zxt
| xt ∈ T })(4.1)

zxt =

∣∣θSG
xt
− θ0

xt

∣∣
se
(
θSG
xt

) .(4.2)

Our quality measure ϕRCS consist of an inner part that
measures exceptionality per occasion, and an outer part
that summarizes the T values into one overall quality
value. Hence, in Equation (4.1) we have f : R1×T 7→
R1×1; examples are the maximum, average, or sum. We
discuss choices for f and their implications in Section
5.2 and now focus on Equation (4.2).

In Equation (4.2), θSG
xt

is the value of a statistic
calculated in the subgroup, se(θSG

xt
) is its standard error,

and θ0
xt

is a reference value. The reader may recognize
this as a z-score or standard score, and we indeed intend
to measure the number of standard deviations that
θSG
xt

deviates from the reference value θ0
xt

. Here, we
have the flexibility to decide whether we want to find
subgroups whose trends deviate from the global trend
in the entire dataset, from the trend in the complement
of the subgroup, or from a fixed value such as 0.

Also, we can choose a statistic for θxt
. For in-

stance, to directly evaluate the trend values, we can
set θxt

= µxt
, where µxt

can be any population pa-
rameter (e.g., mean, prevalence, ratio). Value µxt

can
thus be estimated using one or more RVs. Instead of
directly comparing the trend values, we could also as-
sess exceptional increases or decreases in a trend, or find
subgroups for which the trend is stable (cf. Section 5.1).

We incorporate the sample size of the data at
occasion xt by setting the denominator as the standard
error of the value estimated in the subgroup. The
standard error depends on the sampling distribution
of the estimator and on the sample size. The larger
the sample size, the smaller the standard error and
hence the larger the standard score zxt

. Standard error
correction will direct the search process away from tiny
subgroups. In case the distance to reference value θ0

is similar at two occasions, but the sample size at xt is
larger than at xt′ (t 6= t′), more weight will be on the
distance at occasion xt (since we are more certain about
that distance). Hence, the search can use descriptive
attributes whose distributions change over time, but
corrects for imbalance over time by giving more weight
to estimates calculated from more data.

Furthermore, EMM often employs a constraint that
specifies the minimum size of a subgroup. We adapt this
constraint such that it checks the sample size at occasion
xt for all xt ∈ T , which we denote with csize.
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5 Instantiations of our quality measure

Before we apply our method to both synthetic and real-
world data in Sections 6 and 7, we will now first give
examples of choices for µ, θ, and f .

5.1 Instantiations of µ and θ The Dutch govern-
ment aims to decrease the proportion of Dutch adoles-
cents that consumed alcohol in the past month [6]. To
seek exceptional trends in alcohol use (cf. Section 7.1),
we assume a binary-valued RV L measuring alcohol use
at occasion xt, following a binomial distribution with
parameters nxt and µxt , assuming that nxt is large [1].
Then, µxt can be approximated with the proportion of
the sampled values `, and corresponding standard error

µxt
=

1

nxt

nxt∑
i=1

`ixt
(5.3)

se (µxt) =

√
µxt

(1− µxt
)

nxt − 1
.(5.4)

While analyzing the Eurobarometer dataset [22, Section
4], we are interested in the European citizens’ percep-
tion about the speed with which the European unifica-
tion advances. There, we assume that RV L measures
the speed on a scale between 1 and 7 and that it has
a normal distribution with mean µ. We set µxt

as in
Equation (5.3) with standard error

(5.5) se (µxt
) =

sd (µxt)√
nxt

=

(∑nxt
i=1

(
`ixt
− µxt

)2
√
nxt

(nxt
− 1)

)
.

If we are interested in finding trends with an exceptional
increase or decrease at some measurement occasions, we
can decide to set θxt as the difference, or slope, between
the estimates of two successive occasions. Of course,
this would only work if the data for successive occasions
exist. For the estimate of Equation (5.3) the slope and
its standard error are

θxt
= µxt+1

− µxt
∀t ∈ {1, 2, . . . , T − 1}(5.6)

se (θxt) =

√
se
(
µxt+1

)2
+ se (µxt)

2
.(5.7)

Sometimes, a trend may fluctuate a little between
successive measurement occasions, while the human eye
can distinguish a clear general pattern. Then, directly
comparing the slope in the subgroup with the slope in
the entire dataset may result in finding false subgroups
that are considered exceptional because of sampling
fluctuations. Hence, one may want to first calculate
a weighted moving average τxt with a window u,

(5.8) τxt
=

∑u
t=1 w

∗
xt
µxt∑u

t=1 w
∗
xt

=

u∑
t=1

wxt
µxt

,

where wxt
= w∗xt/

∑u
t=1 w∗xt

. In Section 7.1, we weight
our moving average by the respective sample sizes and
choose a window of u = 2. Then, wxt

= nxt/(nxt+nxt+1)
for all t ∈ {1, . . . , T − 1}. The standard error is

(5.9) se (τxt) =

√√√√ u∑
t=1

w2
xt
se (µxt)

2
.

As a second step, we can then define θxt
and its standard

error as in Equations (5.6) and (5.7), with µxt
replaced

by τxt . While calculating the weighted moving average
with a window of 2, we lose one measurement occasion;
another one is lost while calculating the slope. Hence,
the number of values entered into Equation (4.1) is T−2.

5.2 Instantiations of f The function f aggregates
T standardized values into one subgroup quality value.
When choosing the right function f , we must keep in
mind the ordering of the subgroups in the top-q search.
Subgroups with a larger quality value are ranked higher,
and we consider zxt

to be larger for more exceptional
subgroups. Hence, the maximum, average, or sum are
appropriate choices for f , but the minimum is not.

The maximum is simply fmax = maxzxt
zxt

for all

xt ∈ T . If we set the reference θ0
xt

= θΨ
xt

as the general
trend in the dataset, fmax selects subgroups that deviate
at least once from the general trend. Instead, one could
also take the average over the T standardized scores;
favg = 1

T

∑T
t=1 zxt

. As can be seen in [22, Section 4],
such a summary function selects exceptional subgroups
with smooth trends while fmax results in fluctuating
trends. Of course, fsum prefers subgroups for which
more measurement occasions are available.

In Section 7.1, the general trend in alcohol use is
predominantly decreasing (see Figure 3a). We could
be interested in finding subgroups of adolescents whose
alcohol usage trends have horizontal parts: for those
adolescents, government campaigns may fall flat. We
can find such subgroups by setting θ0

xt
= 0. However,

without any further adaptation, due to the ordering of
subgroups in the top-q search, these settings will result
in subgroups with slopes that deviate from 0, instead
of being close to it. Reversing the ordering won’t help,
since this directs the search towards smaller subgroups:
zxt

in Equation (4.2) decreases if se(θSG
xt

) increases.
We experiment with two solutions. First, we do

not correct for varying sample sizes (se(θSG
xt

) = 1) and
let fcount(ε) = |zxt < ε| count the number of scores
within a threshold ε. The higher the count, the more
exceptional the subgroup. Second, we do estimate the
standard error of the slope, but instead of dividing by
the standard error, we multiply the distance by the
standard error. Again, we use fcount(ε), although it

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited589

D
ow

nl
oa

de
d 

12
/0

4/
22

 to
 3

1.
20

.2
33

.1
81

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



requires a bit more time to specify the right parameter
for ε. In combination with such a multiplication, one
could also use fsum, favg, or fmin and reverse the
ordering in the top-q search. However, this would select
subgroups with a trend that is in its entirety close to 0
(for fsum and favg) or subgroups with a trend that has
just a single slope that is close to 0 (fmin). A comparison
between these two approaches and a discussion of how
the threshold value can be set is given in [22, Section 3].

6 Synthetic data experiments

To show the performance of quality measure ϕRCS ,
we perform a synthetic data experiment as follows.
First, we draw trend values from a normal distribution
N (10, 1) forN = 10 000 cases and randomly assign cases
to one out of T = 10 measurement occasions. Second,
we draw ncovs = 10 binary descriptors a1, . . . , a10,
each from a binomial distribution Bin (n = N, p = 0.5).
Third, we generate a ground truth subgroup with a
description based on nlits ∈ {2, 3, 4} literals, which are
randomly chosen from the 10 binary descriptors. For
instance, a subgroup with 2 literals could be described
by a4 = 1 ∧ a7 = 1. Because of the way the descriptors
are generated, a description with 2, 3 or 4 literals
will approximately cover 25%, 12.5% and 6.25% of the
cases. For these cases, the trend value will be replaced
by a new trend value, which is drawn from a normal
distributionN

(
10 + dist, sd2

)
where the distance varies

with dist ∈ {1, 2, 3} and the standard deviation varies
with sd ∈ {1, 2, 3}. The idea is that the standard
deviation influences the standard error of the trend
estimate. Altogether, these simulation parameters allow
us to analyze how the quality value is influenced by
varying distance, uncertainty of the trend estimate and
size of the subgroup. Specifically, we perform EMM-
RCS with ϕRCS with Equations (5.3) and (5.5), θ0 =
θΨ and fmax. Throughout this paper, we search the
space of candidate subgroups using beam search. See
[22, Section 1] for more on beam search, the choice
of search parameters and applied anti-redundancy and
validation techniques. Here, q = 20, d = 5, and
w = 20. Every combination of simulation conditions
is repeated nreps = 100 times. All simulation code can
be found in our Github repository at https://github.
com/RianneSchouten/EMM_RCS.

Figure 2 shows boxplots of the quality values of
the ground truth subgroups that can be found in the
top-20 results list. The smaller the subgroup, the
larger the quality value (compare the dark boxplots for
nlits = 2 with the lighter boxplots for nlits = 3 and
4). Furthermore, the smaller the uncertainty of the
trend estimate, the larger the quality value (compare
the green boxplots for sd = 1 with the orange and
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: 3
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quality value of the true subgroup

nlits

2

3

4
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1

2
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Figure 2: Boxplots of the quality values of the ground
truth subgroup for 100 repetitions. Top and bottom
panel mark the distance between the subgroup and the
non-subgroup, sd ∈ {1, 2, 3} specifies the standard devi-
ation of the trend in the subgroup and nlits ∈ {2, 3, 4}
specifies the number of literals in the description, which
indirectly influences the size of the ground truth sub-
group (25%, 12.5% and 6.25% respectively).

purple boxplots for sd = 2 and 3). Finally, the larger
the distance between the subgroup and global trends,
the larger the quality value (compare the two panels).

Figure 2 furthermore displays the tradeoff between
the distance, the uncertainty of the trend estimate and
the subgroup size in determining the exceptionality of a
subgroup. After all, the larger the quality value, the
more exceptional the subgroup. A subgroup with a
trend line at dist = 1 with sd = 1 and nlits = 2 (dark
green boxplot at the top) has the same quality value
as a subgroup with dist = 3, sd = 3 and nlits = 2
(dark purple boxplot in bottom panel, see vertical line).
Indeed, even though the latter subgroup is further
away from the global trend, the uncertainty is larger.
Therefore, its exceptionality cannot be distinguished
from a subgroup with a trend that is closer but has
a smaller uncertainty.

More in-depth analysis of results on synthetic data
can be found in [22, Section 2]. Across 27 parameteriza-
tions (some adversarial towards EMM-RCS) the ground
truth subgroup achieved median rank 1 in 20 cases.

7 Real-world data experiments

We run experiments on three real-world datasets, using
various combinations of θ and f . The results for two
datasets are discussed below, and the third experiment
can be found in [22, Section 4].
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7.1 HBSC and DNSSSU dataset Alcohol use
among Dutch adolescents is monitored by two stud-
ies: the Health Behaviour in School-aged Children study
(HBSC) [23] and the Dutch National School Survey on
Substance Use (DNSSSU) [19]. The two studies are con-
ducted every 4 years in alternating fashion, resulting in
a nice regular time interval of 2 years when combining
the two datasets. We analyze the trend in alcohol use
between 2003 and 2019; encompassing the HBSC data
from 2005, 2009, 2013, and 2017, and the DNSSSU data
from 2003, 2007, 2011, 2015, and 2019. The dataset
contains 36 306 cases.

We investigate trends in alcohol use in the last 4
weeks by using a binary attribute with a binomial dis-
tribution (cf. Section 5.1). Specifically, we calculate a
weighted moving average of the prevalence (cf. Equa-
tions (5.3) and (5.8)). In consultation with domain ex-
perts the dataset is constructed such that we have 10
descriptive attributes without missing values. Two of
them are binary, 2 numerical, 3 nominal, and 3 ordinal.

Figure 3 displays trends in alcohol use among Dutch
adolescents across the population (black) and of some
exceptional subgroups. Figure 3b gives the coverage and
descriptions of the subgroups shown in Figure 3a.

The subgroups with a solid trend line are found
by comparing the slope of the moving average of two
subsequent prevalence estimates against a reference
value of θ0

xt
= 0 and by subsequently counting the

number of z-scores that fall within the threshold value
ε = 0.01. As can be seen in Figure 3a, we find several
subgroups with horizontal parts in their trend. As
expected, we find subgroups of adolescents that drink
more (#3), similar (#18) or less (#13, #15) than
the average adolescent. The descriptions give domain
experts valuable knowledge about whom to target with
campaigns. For instance, it would be smart to target
adolescents in the fourth year of secondary school (#3)
rather than adolescents in the first two years (#13).

By counting the number of horizontal slopes, our
quality measure is not restricted to fixed measurement
occasions. We clearly see this in Figure 3a, where the
trend is horizontal between 2003 and 2013 for subgroups
3, 15, and 18, while alcohol use in subgroup 13 decreases
in that same period. It would be interesting to further
explore the relation between these groups of adolescents
and government campaigns that ran in those years.

The dashed line represents a subgroup that we find
by comparing the slope of the moving average with the
overall trend in the population. We found no subgroups
with an increase in alcohol use at any measurement
occasion. We did find subgroups with flat parts in their
trend (such as the ones displayed in Figure 3a but with
different descriptions) and subgroups with a stronger
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(a) Trends of subgroups, and the overall population (black).

# Cov. Description

3 0.07 11 ≤ age ≤ 15 ∧ school year = 4 ∧
lives with both parents = {yes}

13 0.06 life satisfaction = 10 ∧ school year = {1,2} ∧
does mother have a job = {yes, no}

15 0.06 ethnic group = {non-Western} ∧
school level 6= {VWO} ∧ sex = {boy}

18 0.07 ethnic group = {non-Dutch} ∧ 13 ≤ age ≤ 19 ∧
life satisfaction ≤ 7

11 0.41 school level = {HAVO, VWO} ∧
10 ≤ age ≤ 15

(b) Coverage and description of the subgroups.

Figure 3: Subgroups displaying unusual moving aver-
age of the prevalence of alcohol use among Dutch ado-
lescents. Subgroups with solid trend lines are found by
counting how many slopes (of two subsequent measure-
ment occasions) are smaller than ε = 0.01 (cf. Section
5.2). The subgroup with a dashed trend line is found
by comparing the slope in the subgroup with the slope
in the overall population (θ0 = θΨ).

decrease in alcohol use, such as subgroup 11, which
covers younger adolescents in higher educational tracks.

7.2 Brexit dataset A 10-wave survey examines At-
titudes Towards Brexit (ATB) in the aftermath of the
2016 Brexit referendum on EU membership. The sur-
vey was conducted between April 25, 2017 and Jan-
uary 10, 2020. The goal of the ATB survey is to exam-
ine social identities that are formed during the referen-
dum. Combining the ATB survey with panel datasets,
we know that Brexit identities are prevalent, felt to be
personally important and cut across traditional party
lines [8]. The data is available in the UK Data Service,
at https://reshare.ukdataservice.ac.uk/854869/.

Here, we construct a trend of the proportion of re-
spondents that identify themselves as leaver (as oppo-
site to remainer or neither a leaver nor a remainer).
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(a) Trends of subgroups, and the overall population (black).

# Cov. Description

1 0.32 govthand = {don’t know, very, fairly badly} ∧
tradeimmig ≤ 7 ∧
age ≥ 47

2 0.4 govthand = {don’t know, very, fairly badly} ∧
age ≥ 39 ∧
work status 6= {other}

9 0.65 govthand = {don’t know, very, fairly badly} ∧
tradeimmig ≤ 7

1 0.34 hindsight = {wrong} ∧ region 6= East ∧
age ≥ 31

(b) Coverage and description of the subgroups.

Figure 4: Subgroups displaying unusual trends of the
proportion of people who think of themselves as a leaver
considering Brexit. The x-axis represents 10 study
waves between April 25, 2017 and January 10, 2020.
The subgroup with a dashed trend line is found by
directly comparing the proportion in the subgroup with
the proportion in the overall population (θxt = µxt).
Subgroups with solid trend lines are found by comparing
the slopes of the proportion (θxt

= µxt+1
− µxt

).

We drop 1 descriptive attribute because it misses ≥ 50%
of values. From the resulting 15 descriptors, 6 contain
missing values, 1 is binary, 2 are numerical, 6 nominal,
and 6 ordinal. The dataset contains 16 965 cases.

In the Brexit dataset, we explore trends of the
proportion of people who think of themselves as a leaver.
Results can be found in Figure 4. The population trend
is fairly horizontal, with an approximate average of 35%
of respondents who want to leave the European Union.

The dashed line is the best-scoring subgroup when
we directly compare the proportion in the subgroup
with the population trend. Dashed subgroup 1 covers
people who think in hindsight that Britain was wrong
to vote to leave the EU (cf. Figure 4b). Most of the
top-20 subgroups revolve around hindsight = wrong,

and we do not find subgroups that cover more leavers
(than remainers) or subgroups where the trend is not
horizontal. This does not mean that those subgroups
do not exist. Rather, by using Equation (5.3) and fmax,
EMM-RCS finds subgroups with a maximal difference
at just one measurement occasion, and apparently there
are no subgroups with a deviation larger than 0.35.

The subgroups with the solid trend lines are found
by comparing the slopes in the subgroup with the slopes
in the population. Now, we find subgroups with an
increase in the proportion of leavers at measurement
occasions 2 and 3 (first bump) and at occasions 6, 7, and
8 (second bump), but an enormous decrease between
occasions 9 and 10. The final occasion was measured
on January 10, 2020; a month earlier, on December
12, 2019, the UK General Election delivered a landslide
majority for Boris Johnson’s conservatives.

Solid subgroups 1, 2, and 9, while sharing fluctua-
tions, appear at different intercepts. The definitions in
Figure 4b show that all subgroups think that Britain is
bad at negotiating its future relationship with the EU
(condition 1). The other conditions select different age
groups (#1, #2) or believe that Britain should prioritize
free trade rather than controlling immigration (#9). In
general, while the overall population reacted to the 2019
election with a slightly boosted leave proportion, in all
the subgroups 1, 2, and 9 the leave proportion plum-
meted dramatically. It is quite likely that Boris John-
son’s cavalier approach towards all things Brexit and all
matters of negotiation has a strongly polarizing effect:
those people who already thought that the British gov-
ernment were doing a less than ideal job in negotiations
are likely to no longer identify with his particular brand
of leave politics, while the overall population may be
more likely to do so.

8 Conclusion

We propose Exceptional Model Mining for Repeated
Cross-Sectional data (EMM-RCS): a method finding
subgroups with exceptional trends in data collected with
a Repeated Cross-Sectional (RCS) design. We develop
an expressive quality measure, ϕRCS, that builds on the
standard error of trend estimates and is easily adapted
for finding a variety of exceptionalities. EMM-RCS can
handle practical RCS data problems including uneven
spacing of measurement over time, fluctuating sample
sizes, and incomplete descriptive attributes.

Perhaps the starkest illustration of the versatility
of EMM-RCS and our quality measure is provided by
the results in Figure 4, on the Brexit dataset. When
looking for groups with an exceptional slope in the
trend, we find three subgroups that each show a drastic
reduction in identification with the leave camp, when
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comparing measurement occasions directly before and
after the landslide victory of Boris Johnson in the 2019
UK General Election.

When analyzing trends among Dutch adolescents,
we find a subgroup whose alcohol use has not been in-
fluenced by government campaigns. In future work, we
intend to explore both global and local trend exception-
alities on this dataset together with the domain experts,
in a bid to more precisely target government campaigns
aimed at reducing adolescent alcohol consumption.
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