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Abstract. A straightforward approach to handling missing values is
dropping incomplete records from the dataset. However, for many forms
of missingness, this method is known to affect the center and spread of
the data distribution. In this paper, we perform an extensive empirical
evaluation of the effect of the drop method on the data distribution.
In particular, we analyze two scenarios that are likely to occur in prac-
tice but are not often considered in simulation studies: 1) when features
are skewed rather than symmetrically distributed and 2) when multiple
forms of missingness occur simultaneously in one feature. Furthermore,
we investigate implications of the drop method for classification accu-
racy and demonstrate that dropping incomplete records is doubtful, even
when test cases are dropped as well.
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1 Introduction

A straightforward approach to handling missing values is dropping incomplete
records from the dataset [3]. For some forms of missingness, this method is known
to affect the data distribution by creating a shift in the mean of the distribution
and by influencing its standard deviation. In other situations, dropping incom-
plete records merely reduces the dataset size, although this could bring about
new problems such as imprecise statistical estimates or lack of training data
[11,16].

For the student, scientist or engineer, dropping incomplete records allows
to quickly move forward with developing the desired machine learning model.
However, such a model may not live up to its expectations, albeit because after
deployment incomplete cases that are dropped cannot be predicted nor classified.
At the same time, incomplete training data could make the development of an
AI system conceptually or practically impossible [14].

In this paper, we perform an extensive empirical evaluation of the effects of
missing data. The goal of our investigation is twofold. First, we add to exist-
ing knowledge by studying how measures of the center and spread of the data
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distribution are affected when 1) features are skewed rather than symmetrically
distributed and 2) several forms of missingness occur simultaneously rather than
separately. Both situations are likely to occur in practice but are often not con-
sidered in analyses of missing data problems.

Second, we investigate implications of the drop method for classification accu-
racy. In the study of missing data, incomplete datasets are generally randomly
split into training and test data [7–9]. Although such an approach does justice
to a development process that should align with the situation after deployment,
it prohibits the direct investigation of effects of missing data and only allows the
study of imputation methods. On the other hand, when test data is a specific
selection of complete records in an incomplete dataset, the distribution of the
training data may differ from test or application data, creating issues such as
concept drift [22]. In this paper, we demonstrate how missing data shifts the
observed data distribution, that some forms of missingness behave unexpect-
edly when the distribution is skewed and that classification accuracy is affected
whether or not you drop incomplete test records.

2 Background

2.1 Preliminaries

We consider a d-dimensional space X = {X1,X2, ...,Xd−1,Y} and let X =
(X1,X2, ...,Xd−1, Y ) be a random variable taking values in X . Note that we
write Xj and Y to distinguish predictor variables from the assigned outcome
variable, but we assume that all variables have a joint distribution P (X). Next,
we define a complete dataset D ∈ R

n×d = {x1,x2, ...,xn} to be a collection of n
independent and identically distributed realizations of X.

Furthermore, we define a missing data indicator R ∈ {0, 1}n×d that reveals
whether values in D are missing or not. Here, rij = 1 when dij is observed and
rij = 0 when dij is missing for all i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., d}. We dis-
tinguish the hypothetically complete dataset D from the masked, or incomplete,
dataset by denoting the latter with by D̃ = {x̃1, x̃2, ..., x̃n}.

In this paper, we investigate the effect of dropping incomplete records for
various missing data scenarios. Essentially, the procedure discards all observa-
tions that have at least one missing value. We denote the resulting dataset by
D̄ = {x̃i|ri = 1}; the vector of indications for case i should be an all-ones vector.
Denoting the sample size of the dropped dataset by n̄, the overall missingness
percentage is defined as ρ = 100 n̄

n .

2.2 Missing Data Mechanisms

In the study of missing data, the process that governs the probability that certain
values are missing is called the missing data model or missing data mechanism
[3,11,15]. It is helpful to understand which missing data mechanisms are present
in order to choose appropriate missing value treatments. Rubin [15] distinguishes
the following three missing data mechanisms.
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First, data is said to be Missing Completely At Random (MCAR) if the prob-
ability of being missing is unrelated to observed and missing data distribution:
P (R|Dobs,Dmis, ψ) = P (R|ψ). With MCAR every data value has the same, fixed
probability of being missing, denoted by ψ. Consequently, observed and missing
data distributions will be similar, and a method such as dropping incomplete
records will allow for the estimation of unbiased statistical parameters [3].

Second, data is Missing At Random (MAR) if observed data governs the
missingness probabilities: P (R|Dobs,Dmis, ψ) = P (R|Dobs, ψ). Here, observed
and missing data distribution may be different and statistical inferences based on
observed data alone may be severely biased. However, under the MAR assump-
tion, observed data contains all information necessary to model the missing data;
P (Dmis|Dobs, R). This concept of ignorability is an important starting point for
many imputation methods [5].

When data is neither MCAR nor MAR, information about the missing values
is missing from the dataset. Then, data is Missing Not At Random (MNAR). In
other words, the probability to be missing depends on the missing value itself:
P (R|Dobs,Dmis, ψ).

2.3 Missing Data Types

The missing data model can be any function that maps a numerical value to a
probability: f : x �→ p, with p ∈ [0, 1]. In practice, when performing experiments
with missing data, the logistic or sigmoid function flogistic(x) = 1

1+exp−x is a
convenient choice, partially because for any normally distributed input vector
x = {x1, x2, ..., xn}, the sum of n Bernoulli trials with success probabilities
p = {p1, p2, ..., pn} equals np̄ with p̄ = 1

n

∑n
i=1 pi = 0.5 [13]. In practice, this

means that 50% of the records will be incomplete.
Recently, [17] proposed a multivariate amputation procedure that allows for

easy control of missing data characteristics such as missing data mechanisms,
percentage and patterns (every unique row in R is considered a pattern). In
addition, they distinguish four versions of the logistic function that allows the
researcher to control what part of the data distribution will be masked. These
versions are called missing data types and can be seen in Fig. 1.

The right missingness type is the normal logistic function and assigns high
probabilities to large values: fright(x) = flogistic(x). The opposite is the left miss-
ingness type: fleft(x) = flogistic(−x). Furthermore, tail and mid missingness
assign high probabilities to values in the tails and center of the distribution
respectively: ftail(x) = flogistic(|x| − 0.75) and fmid(x) = flogistic(−|x| + 0.75).
Here, 0.75 is a fixed value that ensures ρ = 50% missingness (other percent-
ages are easily obtained by shifting the logistic functions horizontally). All these
missing data types reflect real-world scenarios such as survey questions not being
answered for extreme values or medical tests not being executed for ‘average’
patients. In Sect. 5, we show that the effect of dropping incomplete records varies
for these missingness types [17,18].
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Fig. 1. Four missing data types according to [17]. Standardized weighted sum scores
are linear combinations of observed data. In our notation, we use the general term x.

3 Related Work

Handling missing values by dropping incomplete records is also known as
complete-case analysis or listwise deletion. Especially in the domain of statis-
tics, the effect of complete-case analysis on the validity of statistical estimates
has been studied substantially [2,4,10,11,21]. In the machine learning domain,
dropping incomplete records is generally accepted if missingness percentages are
small or missing values are evenly divided over the data distribution [1,8]. How-
ever, it is not part of empirical studies simply because dropped test cases cannot
be evaluated [7–9].

We consider our paper to build on work by [18]. Schouten et al. [18] investi-
gate whether the correlation between data features influences the effect of missing
data on estimates of the mean, standard deviation and correlation. They find
that for an estimate of the mean, when data correlations are small, the effects
of MAR missingness converge towards those of MCAR missingness; in contrast,
for large data correlations MAR behaves like MNAR.

Furthermore, [18] compare the effects of right, left, tail and mid missingness
types. They empirically show that right and left missingness affect the cen-
ter of the distribution, whereas tail and mid missingness affect the spread of
the distribution. The larger the data correlation, the more these effects appear.
These results are interesting because they show that for some forms of MAR and
MNAR missingness, depending on the statistical quantity of interest, dropping
incomplete records may not be as harmful as we may think.
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In this paper, we evaluate the behavior of missing data for two scenarios
that are likely to occur in practice but have not been studied empirically: 1) the
effect of skewness and 2) the simultaneous presence of multiple mechanisms. We
furthermore investigate the drop method from a machine learning point of view
by analyzing its effect on classification accuracy.

4 Experimental Design

We design two experiments. First, we perform a synthetic data experiment to
investigate the effect of skewness. Thereafter, Sect. 4.1 outlines our experiments
with a real-world, public dataset. All our experimental code and results are
available at https://github.com/Research-Topics-in-Data-Mining/missingness-
effect-complete-dataset.

Synthetic dataset generation is done by drawing a dataset H with n = 10 000
observations from a multivariate normal distribution X ∼ N (μ,Σ) with mean
vector μH = [10, 10] and covariance matrix ΣH = [1, 0.5; 0.5, 1]. In a copy
H ′ = H we then create right-directed skewness in the first feature by squar-
ing all values larger than 3 standard deviations from the center. Formally, for
i ∈ {1, 2, ..., n}, Ai = (Hi

1)
2 if Hi

1 > fmean(H1) + 3fstd(H1) and Ai = Hi
1 other-

wise. Then, H ′
1 = A1 ∩ A2 ∩ ... ∩ An. The amount of skewness can be calculated

by fskew(Dj) = 3(fmean(Dj) − fmedian(Dj))/fstd(Dj) [13]. With our approach,
the average skewness is 0.11.

To ensure fair comparison between datasets H and H ′, we standardize both
datasets into D and D′ respectively such that μD = μD′ = [0, 0] and ΣD =
ΣD′ = I−1

2 . Subsequently, for both D and D′ separately, we generate ρ = 50%
missingness in the first feature for all combinations of missing data mechanisms
and the four missingness types; resulting in 9 scenarios: MCAR, 4 × MAR,
4 × MNAR. MAR missingness is created by using the observed values in the
second feature. For the exact procedure, we apply the multivariate amputation
procedure implemented in function ampute [17] in R.

We evaluate effects of missing data on the center and spread of the distribu-
tion by calculating the difference between the dropped and the complete dataset
for two measures of the center, the mean and median, and two measures of the
spread, the standard deviation and interquartile range. We do this for the skewed
and non-skewed data separately. For instance, the mean shift for the non-skewed
data is ϕmean shift non-skewed = fmean(D1)−fmean(D̄1). We repeat the experiment
T = 1000 times.

4.1 Real-world Data Experiment

The real-world public Breast Cancer dataset1 [12,20] contains 10 predictor fea-
tures and 1 binary outcome variable for n = 569 cases. We generate a simple
missing data pattern where missing values occur in one feature. Specifically, we

1 https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic).

https://github.com/Research-Topics-in-Data-Mining/missingness-effect-complete-dataset
https://github.com/Research-Topics-in-Data-Mining/missingness-effect-complete-dataset
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
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decide to ampute smoothness based on observed data in feature symmetry ; the
two features have a correlation coefficient of 0.6 and smoothness has a medium
importance in a Random Forests (RF) classification model.

We investigate the effect of the simultaneous occurrence of missing data
mechanisms. Note that such a concurrent existence can happen in several ways.
For instance, multiple patterns exist where each pattern follows a different mech-
anism, or the missingness probabilities come from both observed and unobserved
data. We choose an option where missing values occur in one feature; yet for each
mechanism some other subsection of the data is used to determine which cases
should be amputed. We use the implementation of the multivariate amputation
procedure in Python: pyampute [19]).

Specifically, MCAR, MAR and MNAR mixtures are created by varying the
missingness percentages for each mechanism ρmcar, ρmar, ρmnar ∈ {0, 10, 20}.
Consequently, we obtain 26 configurations (the scenario 0-0-0 will not gener-
ate any missing values), where some configurations contain a single mechanism
and others mixtures of 2 or 3 mechanisms. We sequentially perform the experi-
ment for right, left, mid and tail missingness types (thus, a MAR-MNAR mixture
follows the same type), and repeat every simulation scenario T = 1000 times.
Our evaluation metrics are the same as the ones described for the synthetic data
experiment in Sect. 4. The true mean, median, standard deviation and interquar-
tile range of the complete smoothness feature are 0.096, 0.096, 0.014 and 0.018
respectively.

Next, we investigate implications of the drop method for classification accu-
racy. In this study, we apply random forests using the Scikit-learn library in
Python with a maximum tree depth of 3 and no tuned hyperparameters. This
random forest has an accuracy of 0.936 on the complete dataset. The incomplete
dataset is analyzed using two scenarios as shown in Fig. 2:

a) An incomplete dataset is randomly split into training and test data, and
incomplete records are dropped from both sets.2

b) The test data is a selection of complete records in an incomplete dataset.
During development, incomplete cases will be dropped from the training
data.

Although the first scenario is not applicable during deployment, it may still
reveal interesting patterns since the smoothness feature is skewed with a factor
0.10. Consequently, different missingness types may affect the observed data
distribution differently. The second scenario is generally not applied in practice
(at least, we hope so), but provides an excellent way of studying the extent to
which distribution shift affects classification accuracy.

2 N.B.: in the general case, this may affect training and test distribution, but it is
unclear how. Homogeneity might increase, but the data might also become more
scattered and hence variance might increase. Since the distribution can be affected in
a wide variety of possible ways, we will simply ignore this effect; note that technically
this might affect the definition of accuracy.
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Fig. 2. Two scenarios for splitting incomplete data into train and test set.

Fig. 3. Mean shift after dropping incomplete rows for 9 missing data scenarios.

5 Results

All results can also be found in our Github repository.

5.1 Results for Skewness

Figure 3 shows the mean shift for all 9 simulation settings; symmetrical data in
red and skewed data in green. Without skew, results confirm existing knowledge
that MCAR, and mid and tail types of MAR and MNAR missingness do not
create mean shift. In contrast, left and right types of MAR and MNAR missing-
ness shift the mean to the right (positive shift) and to the left (negative shift)
respectively. MNAR generates more shift than MAR missingness.

When data has right-directed skewness, left and right missingness types cre-
ate less mean shift than in the case of symmetrical data (compare the green and
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Fig. 4. Standard deviation shift after dropping incomplete rows for 9 missing data
scenarios.

red boxplots). Interestingly, for skewed data, the average mean shift is approx-
imately similar for MAR and MNAR, although there is more variation across
simulation repetitions for MAR. In addition, for skewed data, mid and tail miss-
ingness types induce mean shift such that mid missingness mimics left and tail
missingness mimics right missingness.

Evaluating the shift in standard deviation for symmetrical data does not give
unexpected results (see Fig. 4). Without skew, MCAR does not affect the spread
of the distribution, while mid and tail missingness types respectively increase
and decrease the standard deviation. Furthermore, for both left and right types
of missingness the standard deviation is reduced.

Interestingly, for left missingness, right-directed skewness increases the stan-
dard deviation rather than decreasing it (compare green with red boxplots in
second panel). Furthermore, when data is skewed, effects of missing data on
the standard deviation vary more between simulation repetitions, especially for
MCAR and MAR mechanisms. For measures of the median and interquartile
range, results are similar as in Figs. 3 and 4 but less extreme.

5.2 Results for Mixtures of Mechanisms

We present the average mean shift over T = 1000 repetitions for mixtures of
MCAR, MAR and MNAR mechanisms in Fig. 5. Naturally, for right missingness,
we see that the higher the missingness percentage, the more the mean shifts.
This increase is larger for MNAR than for MAR missingness. For instance, for
10% MNAR missingness (center of the figure), the increase per 10% of MAR
missingness is around 0.0005 (from light orange to dark orange). In contrast,
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Fig. 5. Average mean shift for mixtures of MCAR, MAR and MNAR mechanisms.
MCAR missingness is fixed to 10%.

for 10% MAR missingness (the very light orange bars), the increase per 10%
of MNAR missingness is around 0.001. On average, the mean shift for MNAR
missingness is twice the amount of the shift for MAR missingness.

Figure 5 demonstrates that the effect of combining multiple mechanisms is
additive (rather than, for example, multiplicative). For instance, compare the
mixture of 10% MNAR and 10% MNAR (medium orange, center of the figure)
with a single MNAR mechanism of 20% (light orange, right side). It turns out
that the former creates an approximate mean shift of 0.001 + 0.0005 = 0.0015;
the latter shifts 2 · 0.001 = 0.002. In addition, a higher missingness percentage
may not necessarily result in more mean shift. For instance, the combination of
10% MNAR and 20% MAR (dark orange, center of the figure) shifts the mean
with 0.001+2 · 0.0005 = 0.002, but a pure 20% MNAR mechanism has a similar
effect. Our findings confirm that not only the missingness percentage determines
the extent to which the mean shifts, but especially the occurrence of certain
(combinations of) missingness mechanisms play a role.

Figure 6 displays the effects of left and mid missingness types on the standard
deviation. Similarly as when we evaluated mean shift, combining multiple mech-
anisms has an additive effect. For instance, for mid missingness, 10% MNAR
combined with 20% MAR increases the standard deviation with 0.0008. A pure
20% MNAR mechanism induces the same amount of shift.

Interestingly, a pure left-type of MNAR missingness decreases the standard
deviation (light orange bars show negative shift). In contrast, combinations of
MNAR and MAR missingness increase the standard deviation. Here, it seems
that the MNAR component behaves as if the smoothness feature is symmetrically
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Fig. 6. Average standard deviation shift for mixtures of MCAR, MAR and MNAR
mechanisms. MCAR missingness is fixed to 10%.

distributed, whereas the MAR component seems to be affected by the right-
directed skewness in the feature (see Sect. 5.1). This may be explained by the
fact that for MAR, missingness probabilities depend on observed data in the
symmetry feature, which is skewed as well.

5.3 Results for Classification Accuracy

We present results for our investigation of the effect of the drop method on
classification accuracy in Table 1. We present the correlation between the abso-
lute shift and classification accuracy. Interestingly, when incomplete data is ran-
domly split in training and test data and incomplete records are dropped in
both datasets (split scenario a in Fig. 2), all significant correlations are positive
(orange values), which means that a larger shift will increase the classification
accuracy. This finding is rather counterintuitive, but there may possibly be an
effect on the symmetry of the data such that records that are difficult to predict
are dropped from both training and test data.

When the test data is a selection of complete records from an incomplete
dataset (split scenario b in Fig. 2), all significant correlations are negative (teal
values). Here, the larger the shift, the lower the classification accuracy. These
findings confirm intuitions; if training data has a different data distribution than
test data, classification accuracy will decrease.
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Table 1. Correlation between the absolute mean and standard deviation shift and
classification accuracy for two train-test split scenarios. MCAR = 0%, SEs are 0.011 in
all scenarios, non-significant correlations are italicized. Orange and teal values present
an increase and decrease in accuracy respectively.

sigmoid mean shift std shift

accuracy accuracy

a b a b

right 0.009 -0.165 0.009 -0.081

left 0.254 0.006 0.017 0.014

tail 0.015 -0.046 0.107 -0.009

mid 0.123 -0.034 0.191 -0.088

6 Discussion and Conclusion

Dropping incomplete records is straightforward; at least when there is no doubt
about the effects on the center and spread of the data distribution. However,
we demonstrated that when data contains right-directed skewness, tail and
mid missingness types induce mean shift, left missingness increases rather than
decreases the standard deviation, and the effects of MAR missingness fluctuate
substantially. We furthermore showed that when multiple missing data mecha-
nisms occur simultaneously, their effects on the data distribution are additive.

We evaluated the relation between dropping incomplete records and classifi-
cation accuracy using a Random Forests (RFs) classification model. In reality,
RFs are able to handle missing data by making surrogate splits or by treating
missing values as a separate category. Moreover, [6] connect RFs to Probabilistic
Circuits and propose Generative Forests (GeFs); a family of models that could
handle incomplete features internally. Nevertheless, in this paper, our interest
is not in creating the best classification model, but rather to show relations
between data distribution shift and accuracy.

We found that classification accuracy decreases when training and test
data are not identically distributed. Alternatively, when incomplete records are
dropped before making a train-test split, accuracy increased. A possible expla-
nation is that in such a situation, records that were difficult to predict were
dropped. Note that classification accuracy changes when a record crosses the
decision threshold; subtle differences in accuracy may be better detectable by
evaluating a prediction model.

In sum, we showed that dropping incomplete records alters the data distribu-
tion considerably; some changes are straightforward, others are not. In general,
our findings have implications for popular imputation methods such as mean
imputation since imputations based on shifted data may transform the data
structure even more.
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6.1 Limitations and Future Work

This paper expands upon a long tradition of missing data research, historically
driven by statisticians more than data miners. We explore the three canonical
missing data mechanisms MCAR, MAR and MNAR as proposed by Rubin [15],
and consider the four missing data types from [17] as also illustrated in Fig. 1.
We believe that the conclusions we draw here are valid and well-supported by
a rigorous set of experiments, but these experiments do come with some limi-
tations. The experiments are run on variations of only a single dataset, apart
from the class label all attributes are real-valued, the experiments employ only a
single classifier, only a single feature has missing values, only unimodal distribu-
tions are investigated, further parameter sensitivity analyses could be imagined
(for instance, do the conclusions change when the missingness rate is varied, or
when missingness depends on the class label?). It is apparent that more work
on this topic is to be done in the (near) future.
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being a sparring partner.
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