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Introduction

In this chapter, we introduce the topic of this dissertation. We are motivated to contribute to
further understanding variation in human behavior by extracting relevant and meaning-
ful patterns from data using a Local Pattern Mining framework called Exceptional Model
Mining (EMM). We observe that employing EMM in the real world is challenging, since
real-world data is often hierarchically structured. Therefore, the main research question in
this dissertation is: How to discover exceptional subgroups in hierarchical data? The work
presented in this dissertation significantly contributes to the body of scientific literature on
EMM for hierarchical data and presents new EMM methodologies for sequential, repeated
cross-sectional and nested data.
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2 Motivation

1.1 Motivation
People differ, not only in physical appearance but in personality, cultural background,
abilities and interests, as well as in cognitive, emotional and social behavior [44, 79, 145,
146]. Understanding variation in human behavior is valuable in many situations. Con-
sider the domain of diabetes care, where e-coaching tools support patients in the self-
management of their chronic condition. Here, it is key to provide feedback and recom-
mendations to people personally, based on individual characteristics.

In this dissertation, we analyze variation in human behavior using a Local Pattern Mining
(LPM) framework called Exceptional Model Mining (EMM) [54, 121]. LPM is a subdomain
of Data Mining (DM), the process of extracting patterns from data [58], and aims to dis-
cover local patterns. In contrast to global patterns that explain most of the instances in
the data, local patterns cover small parts of the data space, deviate from the distribution
of the population and show some internal structure [74, 139].

The framework of EMM focuses on discovering subgroups in a population that somehow
behave exceptionally [54, 121]. It describes these subgroups using a rule-based language
based on conjunctions of selection conditions on a pre-defined subset of data attributes,
the descriptors. Exceptional behavior is measured in terms of parameters of a model class
over other attributes, the targets. EMM is particularly valuable for extracting patterns that
are practically useful. For instance, in Section 5.5, we discover patients with exceptional
blood glucose fluctuations. These patients are described by HbA1c category = low and di-
abetes duration ≥ 20 years and 21.3 ≥ BMI ≥ 35.7. It is evident that discovering such an
exceptional subgroup provides highly relevant information for clinicians and practition-
ers about the needs of individual patients.

We observe that employing EMM in real-world use cases is challenging, since data is often
hierarchically structured. In short, hierarchical data contains observations on more than
one entity type, where the observations of one entity type are nested in the entities of an-
other entity type. The concept is well-known in the social and biomedical sciences and
stems from the idea that individual persons are influenced by the social groups or con-
texts to which they belong (and vice versa) [84, 125, 187]. For example, self-rated health
may relate to the population density of neighborhoods [125] and students’ performance
may depend on the skills of their teacher [84]. The individuals and social groups are con-
ceptualized as a hierarchical system of individuals nested in groups, and groups nested in
larger groups. Then, a shared context introduces a correlation structure between individ-
uals belonging to that context and a common data mining assumption that observations
are independent is violated.

In hierarchical data, the lowest level is not necessarily that of the individual. For instance,
in Section 8.7, students perform multiple tasks, with multiple items per task. This results
in hierarchical data where item-level attribute information is nested in tasks, and tasks
are nested in students. Another type of hierarchical data may occur when information
is repeatedly measured. For instance, in Section 5.3, glycemic treatment is monitored by
repeatedly sampling blood glucose values. These measurements are not independent but
should be considered nested in (the context of) individuals.
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Formally, definitions in EMM are agnostic about the origin of the data, whether or not
one observation is independent from the next one and whether or not the data should be
formatted as a flat table [54, 121]. However, most existing EMM methodologies assume
data to be in the conventional data mining representation where each individual can be
described with one tuple of attribute-values and where a column contains the same se-
mantic information for each individual. In contrast, in hierarchical data, attributes con-
tain multiple values per individual and individuals are described by tuples of tuples (i.e., a
sequence or tuple of values per attribute). Then, the EMM framework runs into problems
with the selection and description of candidate subgroups and with assessing exception-
ality. Hence, further development is needed.

1.2 Objective
We aim to extract societal relevant patterns from data and to enable domain experts to
answer important, real-world questions. However, real-world data often has a hierarchical
structure, which poses problems for the framework of EMM. We therefore need to solve
problems regarding whether and how hierarchical data can be formatted as a flat table,
how selection conditions can be used to cover a group of individuals and how we can
assess exceptionality. The main research question in this dissertation is:

How to discover exceptional subgroups in hierarchical data?

1.3 Research approach
To answer the main research question, in Section 3.4 we build on terminology from mul-
tilevel analysis (MLA) and databases and formally define hierarchical data as a collection
of measurements taken from various types of entities, where the measurements on the
entities of one entity type are nested in the entities of another entity type. For instance,
consider observations from students, nested in classes or repeated measurements, nested
in individuals. We then explore existing approaches for EMM for hierarchical data. Re-
call that in EMM, data attributes are divided into descriptors, used to create and describe
subgroups, and targets, used to model and quantify exceptionality. We propose a unified
framework for EMM for hierarchical data based on whether the hierarchy exists on the
descriptive side, on the target side or on both sides.

We closely work together with domain experts to address important problems in the real
world. To that end, we follow a research circuit as depicted in Figure 1.1, where we start in
the left cycle by formulating domain-inspired research questions (D-RQs). Subsequently,
we investigate the data structure in descriptive and target space and explore whether ex-
isting EMM methodology can be deployed to extract relevant patterns. For all D-RQs dis-
cussed in this dissertation, collected data was hierarchically structured and could not be
analyzed using existing techniques.

We then traverse to the right cycle and formulate EMM-related research questions (EMM-
RQs). We develop generic and domain-independent solutions, and validate our methods
on synthetic and public data. Remark that we do more than just evaluating the internal
validity of our methods: we circle back to the left cycle in Figure 1.1 and additionally assess
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external validity by demonstrating that our proposed EMM methodologies enable domain
experts to confirm existing hypotheses and to spawn interest for new theories. In all chap-
ters in this dissertation, domain experts interpreted our findings and confirmed that our
discovered patterns truly contribute to answering domain-specific questions. Next, we
give an overview of the D-RQs and EMM-RQs for three domains of interest: diabetes care,
public health and learning analytics.

1.3.1 Diabetes care
The clinical accepted standard for monitoring glycemic treatment for patients with dia-
betes type 2 is to measure the blood level of glycated haemoglobin (HbA1c) [208]. However,
the use of HbA1c has important limitations: its assessment does not contribute to reduc-
tion of hypoglycemic episodes and it does not reflect blood glucose fluctuations [38, 108].
An alternative is to investigate the association between HbA1c and blood glucose values
measured with an iCGM device [46]. Consequently, [46, p. 2244] formulate the following
domain-inspired research question:

D-RQ Diabetes care How can the use of iCGM-derived parameters support establishing
individualized glycemic treatment?

In this dissertation, we aim to contribute to answering this question by developing an
EMM methodology that discovers subgroups of patients with exceptional blood glucose
fluctuations. We use data collected by the second DIAbetes and LifEstyle Cohort Twente
(DIALECT-2) [46, 67]. In descriptive space, the DIALECT-2 dataset has the conventional
data mining representation where each patient is represented by a tuple of attribute val-
ues. In target space, the iCGM measurements form sequences (or, time series) of blood
glucose values, where each sequence belongs to an individual patient. In other words,
observations in target space reside at a lower hierarchical level than observations in de-
scriptive space.

Domain-inspired RQ EMM-related RQ

Understand data structure, 
distinguish descriptive and 
target space

Explore existing 
approaches

Demonstrate external validity
in real-world use cases

Develop new 
methodologies

Demonstrate 
internal validity 
using synthetic data

Evaluate using 
public data

Figure 1.1: Schematic illustration of the research circuit used in this dissertation. We aim to contribute to
answering domain-inspired research questions using the framework of Exceptional Model Mining (EMM).
In EMM, data attributes are divided into a set of descriptors, used to create and describe subgroups, and
a set of targets, used to model and quantify exceptionality. A hierarchical data structure may occur in
descriptive space, in target space or in both. This brings about EMM-related research questions.
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Although there exist global pattern mining methods for analyzing time series data with
additional attribute information, in EMM such a combination is rare. An EMM model
class exists for 1st order Markov chains [124]. However, [124] re-format the data by split-
ting sequences of length T into T − 1 transitions. Instead, we aim to discover patients
with exceptional blood glucose fluctuations and therefore require that an individual’s se-
quence is selected into the subgroup in its entirety; it is not meaningful to split sequences.
Consequently, compared to [124] who detect heterogeneity within sequences, we aim to
discover subgroups of homogeneous sequences that are heterogeneous with respect to
the overall population.

To effectively quantify exceptionality in sequential data, we aim for our target model to
be applicable to sequences of varying lengths. Furthermore, our method should allow for
the incorporation of target models that use a varying degree of memory. Therefore, the
EMM-RQs are:

EMM-RQ A1 Which type of target model could provide valuable parameters of blood glucose
fluctuations?

EMM-RQ A2 How to handle varying sequence-lengths in target space?

EMM-RQ A3 How to assess exceptionality of subgroups when the number of model param-
eters differs between subgroups?

1.3.2 Public health
Analyzing societal trends is an important line of research in social sciences as it assesses
how the behaviors, attitudes, and feelings of populations change over periods of time,
and for which groups such changes are particularly pronounced. Current strategies for
analyzing adolescent alcohol use focus on the average, general trend in the population
[161, 192]. For instance, the percentage of Dutch adolescents that had consumed alcohol
in the last 4 weeks at the time of measurement has decreased from 57% in 2003 to 26%
in 2015 and has flattened since then [161, 192]. It would be valuable to understand how
and why the trend in alcohol use differs among subgroups of adolescents [39–41]. Such an
understanding helps policy makers, government institutions and decision makers to take
the right course of action. The D-RQ is formulated as follows:

D-RQ Public health How can we obtain a better understanding of factors that influence
when, whether, and why the downward trend in adolescent alcohol use in the Netherlands
flat-lines?

In the Netherlands, the Dutch National School Survey on Substance Use (DNSSSU) [161]
and the Health Behavior in School-aged Children study (HBSC) [192] investigate alcohol
use of Dutch adolescents. Both DNSSSU and HBSC adopt a Repeated Cross-Sectional
(RCS) research design where new cases are repeatedly sampled from a population at suc-
cessive measurement moments (both DNSSSU and HBSC are conducted every four years,
with an offset of two years between them). Consequently, in RCS data, given the measure-
ment occasion, cases are independent, but over the entire trend period, cases from the
same measurement occasion are more alike than cases from separate occasions.
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We aim to deploy the EMM framework to discover subgroups of adolescents with excep-
tional trend deviations. We cannot directly apply existing instances of EMM to RCS data
for various reasons. First, no model class and quality measure exist that are suitable for an-
alyzing trends. Compared to sequential or time series data where the sequence is known
per individual and the sample size is fixed, in RCS data, an individual contributes to the
trend at just one measurement occasion. Consequently, the entire trend is estimated on
data with varying sample sizes. Second, in descriptive space, the distributions of socio-
demographic variables change over time (e.g., the number of adolescents with a non-
native background fluctuates [40]) and varying survey questions may alter the data type
or induce missing values. Consequently, the EMM-RQs are:

EMM-RQ B1 How to create and describe subgroups when descriptive attributes are incom-
plete?

EMM-RQ B2 Which problems occur when distributions of descriptors change over time and
how can we mitigate these problems?

EMM-RQ B3 How to define and quantify exceptional deviations of societal trends?

1.3.3 Learning analytics
Variation in number processing skills at a young age may predict achievements in mathe-
matical skills later in life [71, 130]. Therefore, understanding individual variation in learn-
ing behavior at an early stage is crucial for providing targeted support to the needs of in-
dividual children, and for developing assessment tools and intervention programs that
adapt to these individual needs [18, 155].

Specifically, enumeration performance reflects two distinct neural processes: the subitiz-
ing system where small sets (1-4 dots) are recognized accurately and rapidly, and the
counting system where larger sets are enumerated more slowly, perhaps by counting dots
or other enumeration strategies [157]. Individual differences in subitizing range predict
math ability [130]. Therefore, the D-RQ is:

D-RQ Learning analytics What are characteristics of subgroups of children whose subitiz-
ing curves exhibit atypical patterns?

The FUnctional Numerical Assessment (FUNA) project [155] is a large-scale research pro-
gram that develops digital assessment tools for detecting dyscalculia and dyslexia. In
FUNA, numerical processing competences and math abilities are assessed using several
computer-assisted tasks. Some of these tasks contain a fixed number or questions, or
items; others are time-based and the number of answered items will vary per child. Items
are taken from a larger set of items, and are not necessarily answered in the same order.
Consequently, the dataset does not follow the conventional data mining representation
where each individual can be described with one tuple of attribute-values. Rather, the in-
formation is presented as one tuple per attribute per child (thus, a tuple of tuples) and has
as a hierarchical structure in both descriptive and target space.

Few existing literature considers lower-level descriptive attributes; most of them deploy
Subgroup Discovery (SD) rather than EMM: they assume one categorical target attribute
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and use quality measures related to Weighted Relative Accuracy (WRAcc) [103, 209, 211]
(more on the difference between EMM and SD can be found in Section 2.2). To the best of
our knowledge, only two EMM methodologies have been developed for data with a nested
structure in both descriptive and target space: [93] construct attributes from time series
and [88] adopt an alternative description language. Instead, we aim to develop an instance
of the EMM framework that answers the following questions:

EMM-RQ C1 Which methods exist for flattening hierarchical descriptors, and what are their
requirements, advantages and disadvantages?

EMM-RQ C2 How to formally define the approach where nested descriptive data is flattened
using domain-specific aggregation functions?

In target space, subitizing curves are estimated with segmented linear regression, but it is
unknown which regression parameter may display exceptional behavior. In addition, the
number of model parameters may differ between subgroups. Therefore, we formulate the
research question as follows:

EMM-RQ C3 How to quantify exceptionality with segmented linear regression as a target
model, taking into account that the parameter displaying exceptional behavior is unknown
and that the number of model parameters may differ between subgroups?

1.4 Outline and contributions
Figure 1.2 gives a schematic overview of the structure of this dissertation. You are currently
reading Chapter 1. In Chapter 2, we provide background information on how EMM orig-
inated as an LPM framework. The chapter also introduces traditional notation and def-
initions for EMM, and gives an overview of existing methods for reducing subgroup set
redundancy and validating discovered subgroups. In this dissertation, we will apply sev-
eral combinations of these anti-redundancy and validation techniques and sometimes
experimentally evaluate their effects.

The main contributions of this dissertation can be found in Chapters 3 - 8. In Chapter 3,
we provide a unified terminology for EMM for hierarchical data. We propose the notion
of subgroup level and distinguish between descriptive and target attributes that abide at
a lower, the same or a higher hierarchical level. We then categorize existing EMM ap-
proaches and uncover existing research gaps. Some of these will be filled by work pro-
posed in this dissertation. In Section 9.1, we discuss how the respective chapters of this
dissertation fit in the unified terminology.

In Chapter 4, we solve problems with analyzing sequential data in target space. We an-
swer EMM-RQs A1, A2 and A3 by proposing discrete Markov chains for modeling fluctua-
tions in sequential data and quantify subgroup exceptionality using a log likelihood based
quality measure, utilizing information-theoretic scoring functions such as Akaike’s Infor-
mation Criterion (AIC) [3, 4] and the Bayesian Information Criterion (BIC) [180]. These
scoring functions allow us to fit Markov chains of varying order and to consider subgroup
models that have a different number of parameters than the model fitted to the entire
dataset. We demonstrate the effectiveness of our proposed approach through extensive
synthetic data experiments and a public dataset.
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We demonstrate external validity of our approach in Chapter 5. We contribute to an-
swering D-RQ Diabetes care by discovering subgroups of patients with exceptional fluc-
tuations in blood glucose values, based on patient-specific information such as age and
HbA1c level. Clinicians and domain experts confirmed the blood glucose transition be-
havior as estimated by the fitted Markov chain models.

In Chapter 6, we solve problems with analyzing target attributes that reside at a higher
hierarchical level than the subgroup level (i.e., individuals are nested in measurement oc-
casions). We answer EMM-RQs B1, B2 and B3 by developing EMM for RCS data. We
propose a generic approach for discovering subgroups displaying exceptional trend be-
havior by building quality measures on the concept of standard error. In addition, we
give directions for how EMM-RCS can work with varying descriptor distributions, uneven
spacing of measurements over time, fluctuating sample sizes and missing data. Our pro-
posed methodology is evaluated on synthetic data and two public datasets. We further-
more propose a refinement operator for handling incomplete descriptors and perform
two controlled experiments to assess its validity.

We demonstrate external validity of EMM-RCS in Chapter 7 by discovering exceptional
trends in adolescent alcohol use. We contribute to answering D-RQ Public health for var-

Chapter 6: EMM for Repeated 
Cross-Sectional data

Chapter 3: Towards a Unified Terminology for 
Exceptional Model Mining for Hierarchical Data

Chapters 1 and 2: Introduction and Background
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Chapter 9: Contributions and Future work
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Figure 1.2: Schematic outline of this dissertation.
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ious types of trend deviations. In addition, we evaluate existing solutions for challenges
such as reducing subgroup set redundancy and validation of the discovered subgroups.
Together with domain experts, we demonstrate that EMM-RCS serves as a hypothesis-
generating source that due to its exploratory nature works as a starting point in further
understanding the interplay between socio-demographic variables and societal trends.

In Chapter 8, we analyze hierarchical data with nested observations in both descriptive
and target space. Regarding challenges in descriptive space, we answer EMM-RQ C1 and
C2 and find that flattening data to long and wide flat-table data formats is incompatible
with the hierarchical nature of data collected with digital assessment tools. As a solu-
tion, we propose the concept of aggregated descriptors and experimentally evaluate the
approach of a Weighted Coverage Scheme (WCS) [117, 201].

Furthermore, we answer EMM-RQ C3 by developing various quality measures based on
the concept of least-squares. Our proposed method allows for the discovery of atypical
subitizing patterns such as deviating initial reaction times, subitizing ranges, counting
slopes or a combination of those. Indeed, domain experts confirm that our findings con-
tribute to answering D-RQ Learning analytics since they support the belief that numerical
processing competences strongly correlate with arithmetic skills.

Chapter 9 is the last chapter of this dissertation. There, we summarize the main conclu-
sions of our work and discuss directions for future research.

1.5 Publications
Publications in scientific conference proceedings and journals that serve as core material
for this dissertation:

• Schouten, R. M., Engelen, B. L., Duivesteijn, W., and Pechenizkiy, M. Towards a unified
framework for Exceptional Model Mining for hierarchical data. To be submitted to IJCAI 2025
(2024) [175].
This manuscript serves as core material for Chapter 3.

• Schouten, R. M., Bueno, M. L., Duivesteijn, W., and Pechenizkiy, M. Mining sequences with
exceptional transition behaviour of varying order using quality measures based on information-
theoretic scoring functions. Data Mining and Knowledge Discovery 36 (2022), 379–413 [170].
This publication serves as core material for Chapters 4 and 5.

• Schouten, R. M., Duivesteijn, W., and Pechenizkiy, M. Exceptional Model Mining for Re-
peated Cross-Sectional Data (EMM-RCS). In Proc. SDM (2022), pp. 585–593 [171] (supple-
mentary material available through [172]).
This publication and supplementary material serve as core material for Chapter 6.

• Schouten, R. M., Stevens, G. W., van Dorsselaer, S. A., Duinhof, E. L., Monshouwer, K., Pech-
enizkiy, M., and Duivesteijn, W. Analyzing the interplay between societal trends and socio-
demographic variables with local pattern mining: Discovering exceptional trends in adoles-
cent alcohol use in the Netherlands. Accepted for presentation at BNAIC/BeNeLearn (2024)
[177].
This manuscript serves as core material for Chapter 7.



1

10 Publications

• Schouten, R. M., Duivesteijn, W., Räsänen, P., Paul, J. M., and Pechenizkiy, M. Exceptional

Subitizing Patterns: Exploring Mathematical Abilities of Finnish Primary School Children with

Piecewise Linear Regression. In Proc. ECML PKDD (2024), p. 66–82 [174].

This publication serves as core material for Chapter 8.

Publications to which I contributed that are not included in the dissertation:

• Schouten, R. M. On the role of prognostic factors and effect modifiers in structural causal
models. Accepted for poster presentation at Causal Representation Learning Workshop NeurIPS
(2024) [169].

• van den Berg, N. T., Broekgaarden, B. O., Mahieu Dionysia, P., Martens, J. G., Niederle, J.,
Schouten, R. M., and Duivesteijn, W. Generating MNAR missingness in image data, with
additional evaluation of MisGAN. Accepted for presentation at BNAIC (2024) [197].

• Schouten, R. M., Taşcău, V., Ziegler, G. G., Casano, D., Ardizzone, M., and Erotokritou, M. A.
Dropping incomplete records is (not so) straightforward. In Proc. IDA (2023), pp. 379–391
[178].

• Verhaegh, R. F. A., Kiezebrink, J. J. E., Nusteling, F., Rio, A. W. A., Bendicsek, M. B., Duivesteijn,
W., and Schouten, R. M. A clustering-inspired quality measure for exceptional preferences
mining – design choices and consequences. In Proc. DS (2022), pp. 429–444 [204].

• van der Haar, J. F., Nagelkerken, S. C., Smit, I. G., van Straaten, K., Tack, J. A., Schouten,
R. M., and Duivesteijn, W. Efficient Subgroup Discovery through Auto-Encoding. In Proc.
IDA (2022), pp. 327–340 [198].

• Schouten, R. M., and Vink, G. The dance of the mechanisms: How observed information in-
fluences the validity of missingness assumptions. Sociological Methods & Research 50 (2021),
1243–1258 [179].

• IJsselhof, R. J., Duchateau, S. D., Schouten, R. M., Slieker, M. G., Hazekamp, M. G., and
Schoof, P. H. Long-term follow-up of pericardium for the ventricular component in atrioven-
tricular septal defect repair. World Journal for Pediatric and Congenital Heart Surgery 11, 6
(2020), 742–747 [90].

• IJsselhof, R. J., Duchateau, S. D., Schouten, R. M., Freund, M. W., Heuser, J., Fejzic, Z., Haas,
F., Schoof, P. H., and Slieker, M. G. Follow-up after biventricular repair of the hypoplastic left
heart complex. European Journal of Cardio-Thoracic Surgery 57, 4 (2019), 644–651 [89].

• Schouten, R. M., Lugtig, P., and Vink, G. Generating missing values for simulation purposes:
A multivariate amputation procedure. Journal of Statistical Computation and Simulation 88,
15 (2018), 2909–2930 [176].

• Kappen, I. F., Bittermann, G. K., Schouten, R. M., Bittermann, D., Etty, E., Koole, R., Kon,
M., Mink van der Molen, A., and Breugem, C. C. Long-term mid-facial growth of patients
with a unilateral complete cleft of lip, alveolus and palate treated by two-stage palatoplasty:
Cephalometric analysis. Clinical Oral Investigations 21 (2017), 1801–1810 [96].

• de Vries, C. P., Schouten, R. M., van der Kuur, J., Gottardi, L., and Akamatsu, H. Microcalorime-

ter pulse analysis by means of principle component decomposition. In Space Telescopes and

Instrumentation 2016: Ultraviolet to Gamma Ray (2016), vol. 99055V, pp. 1699–1708 [43].
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Background

In this chapter, we provide background information on how Exceptional Model Mining
originated as a Local Pattern Mining framework. We introduce notation and definitions
for EMM, discuss the beam search algorithm and give an overview of existing methods for
reducing subgroup set redundancy and validating discovered subgroups.
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2.1 Local Pattern Mining
Knowledge Discovery in Databases (KDD) aims to extract novel, useful and interesting
knowledge from databases [76, 110, 209]. KDD can be distinguished from Data Mining
(DM), where KDD is the “overall process of discovering useful knowledge from data, while
data mining refers to a particular step in this process. Data mining is the application of
specific algorithms for extracting patterns from data” [58, p.82]. Here, the term pattern is
used to refer to both patterns and models extracted from data [58].

A further division of data analysis techniques can be made by distinguishing predictive in-
duction, the set of techniques that induce models from class labeled data, which are then
used to predict the class value of previously unseen examples, from descriptive induction,
which aims to discover comprehensible patterns, typically induced from unlabeled data
[110]. It goes almost unnoticed that in this distinction, the term model is used with re-
spect to predictive induction while the term pattern connects to descriptive induction.
Indeed, [110] distinguish two research communities: the Machine Learning (ML) commu-
nity focuses on developing techniques for predictive induction and the DM community is
involved with descriptive induction.

In both communities, rule discovery is an important aspect of providing information in a
human interpretable way. A rule is a statement of a regularity in the form of “if [premise],
then [conclusion]” [194, p.207]. In the DM community, an association rule is “an expres-
sion X ⇒ Y where X and Y are a set of items. The intuitive meaning of such a rule is that
transactions of the database which contain X tend to contain Y ” [1, p.307]. As such, Asso-
ciation Rule Mining (ARM) [2, 113] builds on Frequent Itemset Mining (FIM) [73]. In the
ML community, the focus is on building sets of classification and prediction rules [32, 34]
that together describe the population well. We could refer to this process as the discov-
ery of strong rules: descriptions that apply to numerous objects (i.e., transactions) in a
database with few counterexamples [194].

At the start of the 21st century, the concept of global models that explain most of the in-
stances in the data was opposed with that of local models or patterns [74, 139]. The idea is
that global models aim to find patterns that cover majorities in the population. The recent
advances in deep learning and foundation models take place in this context. Alternatively,
we may describe a population by a background model + a set of local patterns + random
background noise [74]. Based on this definition, experts agreed that [139, preface]:

• local patterns cover small parts of the data space,

• local patterns deviate from the distribution of the population,

• local patterns show some internal structure.

Altogether, local patterns are interesting as targets of discovery since they deviate from
the background model and could therefore reveal unknown information. Hence, Local
Pattern Mining (LPM) [10, 139] originated as a subdomain of DM that aims to discover
interesting subsets in the dataset. These subsets are not just collections of data points
but they are patterns that are interpretable for domain experts and can be generalized to
unseen data points; we call them subgroups.
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Examples of LPM frameworks are Contrast Set Mining (CSM) [12] and Emerging Pattern
Mining (EPM) [48]. Contrast sets are “conjunctions of attributes and values that have dif-
ferent levels of support in different groups” [12, p.214]. CSM is a special case of ARM where
the consequent is restricted to a variable whose values denote group membership [206].
Emerging patterns are “itemsets whose support increases significantly from one data set
to another” [48, p.43]. Emerging patterns can be seen as association rules with an item-
set in the rule antecedent and a fixed consequent: I temset → D1, for a given dataset D1

being compared to another dataset D2 [110].

Where the DM community shifted their focus from ARM towards CSM and EPM, the con-
cept of local patterns motivated the ML community to move from building sets of classi-
fication and prediction rules to building individual rules for exploratory data analysis and
interpretation. One of the tasks that emerged from this process is Subgroup Discovery
(SD) [102, 110, 117, 209]: the task of identifying interesting subgroups according to some
property of interest (more below in Section 2.2). A subgroup description can be seen as
the condition of a rule: Subg r oupDescr i pti on → C l ass. Together, CSM, EPM and SD
are considered supervised descriptive rule discovery tasks [110].

Another task that displays the evolution from global to local models in the ML community
was introduced by [154], who presented an algorithm involving classification trees where
two trees are grown in opposite directions so that they are matched at their leaves. The
approach is called redescription mining: the task of finding subgroups having several de-
scriptions or equivalence relationships of the form E ⇔ F where E and F are set-theoretic
expressions of binary attributes (or, items) [64, 154]. The work was extended from binary
to real-valued data [63] and to relational data [61, 62].

It is clear that LPM frameworks emerged from different directions and with different pur-
poses. The distinction between methods may be small and sometimes appears only after
a detailed studying of terminology and definitions. Furthermore, proposed LPM frame-
works may originate as mixtures of other methods. For instance, [191] propose redescrip-
tion model mining. Others utilize LPM to build global models [88, 105, 117].

Remark that LPM differs from DM methods such as clustering [212], which is a global
analysis approach that aims to divide all data points into k distinct groups, and outlier de-
tection, which aims to detect single data points that deviate from the global model. Tra-
ditionally, neither methods focus on discovering a shared characteristic or interpretable
description of the selected clusters and outliers. For instance, in Section 4.3, [164] take
an approach similar to us by discovering unusual sequences based on the concept of log
likelihood, but without providing additional descriptions of the detected outliers.

Some interesting work exist that combines techniques from LPM with clustering or outlier
detection. For instance, [213] propose Cluster-Grouping (CG) as a subtask in SD, cluster-
ing and classification. Furthermore, [111] deliver an explanation of detected outliers in
arbitrarily oriented subspaces of the original attribute space and [107] use SD as a post-
processing step to obtain descriptions after regular outlier detection.

In this dissertation, we zoom in on an LPM framework that is known as Exceptional Model
Mining (EMM) [54, 121]. But first, we discuss Subgroup Discovery (SD) [102, 209].
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2.2 Subgroup Discovery
The task of Subgroup Discovery (SD) was defined as follows: “In subgroup discovery, we
assume we are given a so-called population of individuals (objects, customers, ...) and
a property of those individuals we are interested in. The task of subgroup discovery is
then to discover the subgroups of the population that are statistically most interesting, are
as large as possible and have the most unusual statistical (distributional) characteristics
with respect to the property of interest” [210, p.84-85]. In the form of a rule, an induced
subgroup description is defined as Cond → Tar g etvalue , where Tar g etvalue is a value for
a variable of interest for the SD task (also referred to as C l ass). Cond is a conjunction of
attribute-value pairs [65, 102, 103, 117, 182].

Several interesting survey papers for SD exist [8, 76, 80]. They all reveal an abundance of
quality measures and search algorithms. A quality measure ϕ : 2Σ → R maps every pat-
tern (subgroup) in the search space to a real number that reflects the interestingness of a
pattern (Σ is the set of all possible attribute-value pairs). Depending on whether the tar-
get variable is binary, nominal, ordinal or numeric, many quality functions exist, varying
from coverage and support, to precision, sensitivity and specificity, to weighted relative
accuracy, mean gain, z-score and many more [8, 80].

A clear overview of subgroup search algorithms is provided by [76], who distinguish three
groups: beam search based algorithms, exhaustive search algorithms and genetic algo-
rithm based approaches. An anytime algorithm with guarantees was proposed by [15].
Interestingly, already since the start of the development of SD algorithms, special atten-
tion was given to SD in other than single-relation databases. Multi-relational SD was pro-
posed by first defining “a designated object relation intended to be the master relation of
the population of interest” [209, p.80]. Subsequently, sampling techniques filter the ap-
propriate target data without joining all possible relations. Alternatively, [103] traverse the
search space by using a set of aggregation functions such as count, average, max, and min,
while additionally, a predefined relation graph that determines which joins are selected.
Another valuable approach to performing multi-relational SD is by way of propositional-
ization: transforming a relational database into a single-data-table representation [211].

The domain of SD furthermore focused on exploiting background knowledge in the form
of ontologies, called Semantic SD or Semantic DM [118]. An ontology is a hierarchy of con-
cepts, such as the nesting of cities in regions in countries [202], or the nesting of protein
binding sites in genes [118, 119, 140, 185]. The hierarchical structure is generally given by
domain experts. Since every entity in the dataset has an associated value for each of the
concepts, ontologies are valuable for traversing the search lattice efficiently.

2.3 Exceptional Model Mining
Another LPM stream that builds on the SD task is the framework of Exceptional Model
Mining (EMM) [54, 121]. EMM is considered a generalization of SD where the interesting-
ness of subgroups is determined over target models rather than a single target attribute.
It aims to discover subgroups in the dataset where a model fitted to the subgroup is sub-
stantially different from a model fitted to the entire dataset. EMM commonly takes into
account ≥ 2 target attributes whereas SD uses 1.



Background

2

17

The idea of EMM was introduced by [121] and further developed by many authors. In
2016, a cohesive overview of EMM terminology, search strategies and instances was pro-
vided by [54]. Examples of target models include correlation [121], association [54], linear
regression [53] and Bayesian Networks (BNs) [56].

In this chapter, we provide a short introduction to EMM. We particularly focus on no-
tation and terminology (Section 2.3.1) and beam search as the search algorithm of our
choice (Section 2.3.2). We give an overview of existing techniques for reducing subgroup
set redundancy and for validating the discovered subgroups in Section 2.3.3. We discuss
specific methods that are relevant and related to our proposed methodologies in the re-
spective chapters of this dissertation. Furthermore, Chapter 3 extensively discusses re-
lated work on EMM for hierarchical data. Here, we present traditional EMM definitions.

2.3.1 Traditional notation and terminology
Traditionally, EMM assumes a datasetΩ to be a bag of n records r ∈Ω of the form

r =
(
a1, . . . , ak ,ℓ1, . . . ,ℓm

)
, (2.1)

where k and m are positive integers [54].1 In EMM, we call a1, . . . , ak the descriptive at-
tributes or descriptors of r , and ℓ1, . . . ,ℓm the target attributes or targets of r . For SD, m = 1,
whereas for EMM, typically m ≥ 2. Figure 2.1 gives a schematic illustration of a dataset for
n = 5, k = 4, and m = 3. Whether an attribute is deployed as descriptive or target attribute
is generally based on the application domain.

The descriptive attributes are used to describe and discover subgroups of records. A sub-
group is defined using descriptions; a description is a Boolean function D : A → {0,1}
which covers a record r i if and only if D

(
ai

1, . . . , ai
k

) = 1. Here, A is the collective domain
from which the full set of descriptors is taken; a Cartesian product of the domains of each
individual descriptor. Consequently, a subgroup is defined as follows:

Definition 2.1 (Subgroup cf. [54]). A subgroup corresponding to description D is the bag of
records GD ⊆Ω that D covers:

GD =
{

r i ∈Ω | D
(
ai

1, . . . , ai
k

)
= 1

}
.

The complement contains all records that are not covered; GC =Ω\GD .

In EMM, the choice of description language D is free, though generally we let the descrip-
tion be a conjunction of selection conditions over the descriptors, where condition sel j

is a restriction on the domain A j of the respective attribute a j . For instance, for discrete
variables the selector may be an attribute-value pair (a j = v); for continuous variables it
could be a range of values (w1 ≤ a j ≤ w2) [54, 135, 171].

1We follow up on notation defined by [54], but there are no major differences with other prominent work on SD
and EMM, such as [8, 102, 121].
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Figure 2.1: Schematic illustration of dataset Ω as commonly used in EMM.

We aim to discover the descriptions for which the subgroups display exceptional behavior
on a target model, fitted to a set of target attributes. The target model of interest and type
of target variables generally depend on the application. A straightforward example is a
correlation model, where we are interested in the linear association between two numeric
targets ℓ1 and ℓ2 as measured by the correlation coefficient ρ. A possible aim is to discover
subgroups with exceptionally deviating correlation coefficients [121].

Formally, we quantify exceptionality using a quality or interestingness measure. A quality
measure quantifies the difference between behavior in the subgroup and some reference
behavior, usually the subgroup’s complement:

Definition 2.2 (Quality Measure cf. [54]). A quality measure is a function ϕ : D → R that
assigns a numerical value to a description D.

For correlation as target model, a possible quality measure is ϕscd = 1−p where p is the

p-value of a statistical hypothesis test that evaluates H0 : ρG = ρGC
against H1 : ρG ̸= ρGC

[121]. The larger the difference between the correlation coefficients of the subgroup and
the subgroup’s complement, the smaller the p-value and the higher the quality valueϕscd .
Subgroups with higher quality values are considered more exceptional than subgroups
with lower quality values. The task of EMM is to discover these subgroups.

Quantification of exceptionality using quality measures is usually not sufficient to discover
interesting subgroups. After all, the most extreme deviations from the norm can be found
in very small subsets of the data; these are generally not the most interesting for domain
experts. Therefore, we somehow want to incorporate the subgroup size when evaluating
candidate subgroups, for instance by multiplying ϕ with n or

p
n. Another interesting ap-

proach is to multiply with the entropy function [54, cf.] The entropyϕe f is maximal (close
to 1) when subgroup and complement both contain 50% of the data rows; it is smallest
(close to 0) when subgroup or complement are (almost) empty.

Remark that statistical tests generally require independence of observations. Although
formal EMM definitions are agnostic about the origin of the data and whether or not
record r i is independent from record r j , most commonly, dataset Ω contains n indepen-
dent observations, drawn from multivariate state-space A ×L . It is then possible to for-
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mat data as in Figure 2.1, to use statistical tests to quantify the exceptionality of subgroups
and to directly compare G to GC .

For the same reason, in traditional SD and EMM, entities may be described as records,
cases, individuals, transactions, objects or observations (at this point in this dissertation,
we have encountered all of these already). Since every independent draw is another entity
of the same entity type, the terms used to describe that type are interchangeable. How-
ever, in the context of hierarchical data, the data contains observations on multiple entity
types and the relative positioning of these entity types is important for whether or not ob-
servations are independent. In this context, it is challenging to directly compare G to GC

and to use statistical tests to quantify exceptionality. Alternative methods are needed.

2.3.2 The beam search algorithm
The task of EMM is to effectively search through the space of candidate subgroups to find
the top-q best-scoring subgroups [54]. Conform [54], the formal task definition of EMM
can be defined as:

Definition 2.3 (Problem statement top-q Exceptional Model Mining). Given a dataset Ω,
description language D, quality measure ϕ, positive integer q, and a set of constraints C ,
the top-q task is to find the list {D1, ...,Dq } of descriptions in the language D such that

• ∀1 ≤ i ≤ q: Di satisfies all constraints in C ;

• ∀i , j : i < j ⇒ϕ(Di ) ≥ϕ(D j );

• ∀D ∈D \ {D1, ...,Dq } : D satisfies all constraints in C ⇒ ϕ(D) ≤ϕ(Dq ).

Possible constraints include a minimum subgroup size, a constraint on the quality value
or the application of pruning and anti-redundancy techniques (see Section 2.3.3).

Many search algorithms exist; some of them developed for particular kinds of exceptional
behavior [17, 24, 123, 131], others for particular data types [118, 132, 138, 158]. Never-
theless, most EMM methodologies consider the search space to be a general-to-specific
search lattice where relations are formed by subgroups whose descriptions differ by con-
joining of a single additional selection condition (i.e., more general (specific) subgroup de-
scriptions occur higher (lower) in the lattice and cover more (fewer) instances). The core
difference between most search algorithms is the way in which they traverse the search
lattice; given a (candidate) subgroup description, the selection of subgroup members is
comparable for many search algorithms.

In all chapters in this dissertation, we choose beam search [54, Algorithm 1] as our search
algorithm of choice. We have three important reasons. First, beam search discovers excep-
tionally behaving subgroups using a heuristic search strategy. It is an intuitive method that
can easily be understood at a conceptual, non-technical level. This makes beam search
perfect when working together with experts from various domains. Furthermore, given a
deterministic quality measure, beam search is deterministic; with the same data and pa-
rameter settings, the algorithm returns the same top-q subgroups. Third, beam search is
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Algorithm 1 Beam Search Algorithm cf. [54, Algorithm 1]

Input DatasetΩ, quality measure ϕ, refinement operator η, beam width w ,
beam depth d , result set size q , constraints C

Output PriorityQueue resultSet

1: candidateQueue ← new Queue;
2: candidateQueue.enqueue({});
3: resultSet ← new PriorityQueue(q);
4: for (Integer level ← 1; level ≤ d ; level++) do
5: beam ← new PriorityQueue(w);
6: while (candidateQueue ̸=∅) do
7: seed ← candidateQueue.dequeue();
8: set ← η(seed);
9: for all (desc ∈ set) do

10: quality ←ϕ (desc);
11: if (desc.SATISFIESALL(C )) then
12: resultSet.insert_with_priority(desc,quality);
13: beam.insert_with_priority(desc,quality);

14: while (beam ̸=∅) do
15: candidateQueue.enqueue(beam.get_front_element());

16: return resultSet;

not restricted to particular descriptors, target models or quality measures; it can be ap-
plied as long as there exists a set of descriptors a1, ..., ak which can be of any type (binary,
nominal, ordinal and/or numerical) and it can work with any quality measure defined
over target attributes.

The beam search algorithm is shown in Algorithm 1 (cf. [54]). In essence, beam search
performs a level-wise search of d levels (line 4). At each level, w promising descriptions
are selected into the beam (line 13); these descriptions are taken to the next level (line
15) and refined further (line 8). Refinement of candidate subgroups occurs by conjoining
single additional selection conditions to existing subgroup descriptions (line 8). Following
[54], the time complexity of the beam search algorithm is:

O (d wkn(c +M(n,m)+ log(w q))). (2.2)

Here, M(n,m) is the time complexity of evaluating the quality of a target model on n
records and m targets; c is the cost of comparing two models. After a pre-specified number
of levels d , the top-q subgroups are returned.

2.3.3 Pruning and validation techniques
Considering that our methodologies aim to answer RQs that impact people in the real
world, and considering that practitioners and policy makers may build upon these re-
sults, it is crucial that we validate the discovered subgroups. Therefore, throughout this
dissertation, we apply the following two techniques: 1) we construct a Distribution of



Background

2

21

False Discoveries (DFD) as proposed by [52] and 2) we apply a minimum improvement
(MI) threshold [13]. Both approaches are discussed in detail below.

In addition, while discovering exceptional subgroups, we distinguish the process of local
pattern discovery from the process of discovering a set of local patterns [104]. The former
ensures that each D ∈ {D1, ...,Dq } is interesting on its own, while the latter takes into ac-
count overlap and similarities between selected subgroups. Subgroup set discovery aims
to deliver a subgroup set {D1, ...,Dq } that is somehow optimal as a set. Generally, the two
processes are executed sequentially. First, we discover interesting subgroups. Second,
pruning and post-processing techniques are used to remove redundant or non-significant
subgroups [104, 105, 205].

An alternative approach is to incorporate pruning techniques while creating the beam, at
each level in the search. This approach is computationally more efficient and increases the
diversity of the final pattern set [200, 201]. Specifically, we may differentiate between re-
dundancy of subgroup descriptions (subgroups having similar descriptions), redundancy
of subgroup covers (subgroups covering the same set of individuals) and redundancy of
exceptional models (subgroups having the same exceptionality score) [201].

In this dissertation, we apply three anti-redundancy techniques: Description-Based Se-
lection (DBS) [201] to reduce redundancy of subgroup descriptions and exceptional mod-
els, a Weighted Coverage Scheme (WCS) [117, 201] to increase the variation in subgroup
cover, and Dominance-Based Pruning (DBP) [201] to remove conditions that decrease the
quality of the subgroup. Table 2.1 provides an overview of the anti-redundancy and val-
idation techniques that are used in the chapters of this dissertation. In Sections 7.5 and
8.7.1, we perform additional experiments to evaluate the effects of these techniques. We
now discuss DBS, WCS, DBP, DFD and MI in detail.

Description-based selection

With Description-Based Selection (DBS) [201], we evaluate the descriptions and quality
values of candidate subgroups before determining the beam. The strategy greedily se-
lects subgroups by comparing each candidate to the subgroups already selected (starting
with the subgroup with highest quality). Specifically, subgroups are skipped if they have
1) equal quality and 2) the same selection conditions except for 1 condition. We aim to
keep the candidate subgroup with the most general description. For instance, these are
descriptions with fewer conditions or descriptions based on numerical attributes where
the numerical range is wider.

We distinguish fixed-size DBS, where candidate subgroups are evaluated until a fixed beam
size is reached, from variable-size DBS, where each description attribute is allowed to oc-
cur a fixed number of times in a condition in a subgroup set [201]. In this dissertation,
we always apply fixed-size description-based selection. Most commonly, we set the beam
size to 2w (where w is the original beam size without performing DBS). The fixed beam
size should not be too large, to reduce the computational cost of subsequent procedures
(WCS and DBP, see below); the beam size should not be too small, to warrant that a suffi-
cient number of candidate subgroups is available.
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Remark that rounding of quality values influences whether or not the first requirement in
DBS is met (subgroups are skipped if they have equal quality). Without sufficient rounding
of quality values, is it likely that none of the subgroups will be removed. At the same time, if
the rounding procedure is too strict, we may not be able to distinguish between candidate
subgroups.

Weighted coverage scheme

A Weighted Coverage Scheme (WCS) was initially introduced by [117] when they incor-
porated the cover of candidate subgroups into the Weighted Relative Accuracy (WRAcc)
measure. The idea was generalized by [201], who proposed to weigh the quality value of
each candidate subgroup based on the number of times individuals are already covered
by other subgroups. Like DBS, a WCS is used at every search level and aims to create a
diverse beam.

A WCS selects the desired number of subgroups in iterations. Initial counts for all indi-
viduals are 0. Consequently, in the first iteration, all individuals are equally likely to be
covered (equal counts of 0, weights are all 1) and the subgroup with the highest quality
value is selected. Second, the counts of the individuals covered by the first subgroup are
increased with 1. This changes the weights of the candidate subgroups and reduces their
quality value depending on how many individuals are covered. After re-calculating all
quality values, the current best subgroup is selected, counts are updated, weights are up-
dated and the process iterates until the desired w (in case of selection of the beam) or q
(in case of preparing the final result list) subgroups are selected.

Table 2.1: An overview of the anti-redundancy and validation techniques used in this dissertation, given
per chapter and per experiment. Parameter settings are provided in the respective chapters.

Chapter Experiment DBS WCS DBP DFD MI Code

4

Synthetic transition A
Synthetic starting ✓ ✓ ✓ A
Synthetic sensitivity A
MovieLens ✓ ✓ ✓ A

5 DIALECT-2 ✓ ✓ ✓ A

6

Synthetic ✓ ✓ ✓ B
MD Brexit ✓ ✓ ✓ B
MD HBSC/DNSSU ✓ ✓ ✓ ✓ C
Eurobarometer ✓ ✓ ✓ ✓ B
Brexit ✓ ✓ ✓ ✓ B

7 HBSC/DNSSU ✓ ✓ ✓ ✓ ✓ C

8
Exploration WCS ✓ D
FUNA ✓ D

A https://github.com/RianneSchouten/simulations_markov_chains_emm/
B https://github.com/RianneSchouten/EMM_RCS/
C https://github.com/RianneSchouten/AlcoholTrends_HBSCDNSSSU_EMM/
D https://github.com/RianneSchouten/FUNA_EMM/

https://github.com/RianneSchouten/simulations_markov_chains_emm/
https://github.com/RianneSchouten/EMM_RCS/
https://github.com/RianneSchouten/AlcoholTrends_HBSCDNSSSU_EMM/
https://github.com/RianneSchouten/FUNA_EMM/
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The WCS proposed by [201] updated the quality values by means of multiplicative weighted
coverage. Then, in each iteration, the weight of candidate subgroup G is:

τG
mult =

1

nG

nG∑
i=1

γci , (2.3)

where ci counts the number of times that individual i is already covered by previously
selected subgroups (the higher the count, the lower τG

mult and the more the reduction in
quality). Parameter value γ ∈ [0,1] reflects how strict our weighting regime should be: at
one end of the axis we remove covered instances from the dataset before choosing the next
pattern (γ = 0); at the other end we give equal weights to all individuals independent of
the number of times they have been covered (γ= 1). The smaller the value of γ, the more
strict the weighting regime.

As an alternative, additive weighted coverage was proposed [117]. Here, each subgroup is
weighted with:

τG
add = 1

nG

nG∑
i=1

1

ci +1
, (2.4)

In this dissertation, we apply fixed-size multiplicative WCS with γ = 0.9. In Section 8.7.1,
we explore the interaction effect between γ and search depth d . Recall that in this disser-
tation, we apply DBS and WCS sequentially. This means that WCS is only applied to the
set of candidate subgroups that have survived the DBS.

Dominance-based pruning

Beam search can lead to subgroup descriptions where a certain subset of conditions has a
higher quality value than the full description itself [201]. This may happen especially with
binary variables. For instance, the description sex = female ∧ ethnic group = western may
not appear in the results list because the individual descriptions sex = female and ethnic
group = western did not have high quality (and were therefore not included in the top w
subgroups at level 1 of the search). However, the description age ≤ 14 ∧ sex = female ∧
ethnic group = western may have been discovered (because age ≤ 14 was selected into the
beam at d = 1), but with lower quality than the subgroup description based on the two
conditions on descriptors sex and ethnic group. Here, we say that a subset of conditions
dominates the original description [201].

We apply a form of Dominance-Based Pruning (DBP) where we evaluate the quality of all
subgroups that can be formed based on the subsets of the conditions of the descriptions of
the top-q subgroups. We thus apply DBP after the result list has been determined. In the
situation that a certain subset of conditions has a higher quality value, we will adopt it as a
new description and place it in the results list. Obviously, that means that the subgroup at
position q will be removed from the list. We consider DBP to be a form of anti-redundancy
as well as subgroup validation because it removes those conditions from descriptions that
do not substantially add to the quality of the subgroup.
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Distribution of False Discoveries

To validate the significance of the discovered subgroups, the quality values of all top-q
subgroups are compared against a null Distribution of False Discoveries (DFD) [cf. 55].
The DFD is constructed as follows. First, we randomly swap the values of descriptors be-
tween individuals while keeping the information on targets intact. For instance, for our
study of adolescent alcohol use in Section 7.5, we exchange the values of adolescent r i

(who has age 13, life satisfaction 8 and a Dutch ethnicity) with the values of adolescent
r j (who has different values on these variables). Here, if adolescent r j was drinking al-
cohol (the target attribute), we keep that information intact, which makes that drinking
alcohol is now associated with an age of 13, a life satisfaction of 8 and a Dutch ethnic-
ity. In other words, the swap randomization removes the correlation between descriptors
(socio-demographic variables) on the one side and targets (alcohol use) on the other side,
while keeping the distributions intact.

Next, we perform beam search on the swapped randomized dataset and store the quality
value of the best-scoring subgroup. This subgroup and associated quality value should
be considered a false discovery because the relation between the socio-demographic vari-
ables and alcohol use does not truly exist in the swap-randomized dataset. By repeating
the procedure m times, we obtain m quality values which are used to construct a null
distribution; the DFD. Under the assumption that m is sufficiently large, the mean of
the quality values follows a normal distribution. We then run beam search on the non-
swapped, original dataset and compare the quality values of the top-q subgroups against
the DFD by means of a Z-test. The chosen values for m and the significance levelαDF D are
different in different chapters of this dissertation. If m is not sufficiently large, a p-value
can be calculated non-parametrically by means of ranks.

Minimum improvement threshold per condition

Lastly, we ensure that all conditions of a subgroup description substantially add to the
subgroup’s quality by adding a Minimum Improvement (MI) threshold [13]. While DBP
removes conditions that decrease the quality value of a subgroup, here we aim to evaluate
whether every condition results in a substantial increase in quality. Although MI does
not fully dismiss the probability that any discovered pattern is a chance artifact [205], we
consider the method valuable for assessing whether an increase in quality is practically
meaningful and relevant.
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Towards A Unified Terminology

Subgroup Discovery (SD) and Exceptional Model Mining (EMM) aim to discover subgroups
in a population that somehow behave exceptionally. Both SD and EMM are continuously
evolving research areas, especially towards the discovery of subgroups in datasets that have
some kind of hierarchical structure that deviates from the typical row-by-column table for-
mat. Although formal EMM definitions do not assume data points to be independent, we
observe a problem with the way current terminology is deployed for non-IID data. On the
one hand, overlooking a possibly nested data structure increases the risk of unintentionally
finding nested subgroups. On the other hand, understanding similarities and differences
between existing work is challenging because data structures and proposed methods are de-
scribed using a variety of terms and definitions; this disturbs the process of mapping appli-
cation questions to available EMM methodologies and may lead to reinventing the wheel.
As a solution, we provide a unified terminology for EMM with hierarchical data, we propose
the notion of subgroup level and we classify existing literature based on whether descriptive
or target attributes reside at a lower, the same or a higher hierarchical level than the sub-
group level.

The contents of this chapter will be submitted to IJCAI 2025.



3

28 Introduction

3.1 Introduction
Subgroup Discovery (SD) [80, 102] and Exceptional Model Mining (EMM) [54, 121] are
local pattern mining frameworks, seeking interpretable subgroups in a population that
somehow behave exceptionally (see Section 2.3). Both SD and EMM are continuously
evolving research areas in the domain of Data Mining (DM) [8, 76, 110, 174]. In the rest of
this chapter, we will use the term EMM as overarching term for both SD and EMM, unless
a clear distinction has to be made.

One of the directions in which EMM evolves, is the discovery of subgroups in datasets
that have some kind of hierarchical structure; the structure deviates from the typical row-
by-column table format. For instance, we have Exceptional Subgraph Mining [19, 98],
Sequential EMM [131, 138], and Temporal EMM [26]. Indeed, in many applications, data
points are not Independent and Identically Distributed (IID) and it is valuable to develop
data mining methods that do not assume IID data.

However, in the EMM literature, we observe a problem with the way traditional termi-
nology is applied to non-IID data. Although formal definitions in EMM do not assume
data points to be independent, in practice much of the work has focused on single-table
row-by-column data (more in Section 3.5). As a consequence, we see a potential risk
of confusion when the EMM framework further develops towards non-IID data. For in-
stance, we come across work that seems to assume IID data but experiments on data with
a nested (dependent) structure [10, 50], and we find work that seems to apply the same tar-
get model but in reality discovers subgroups of entities that reside at different hierarchical
levels [124, 170].

Furthermore, we notice that existing work on EMM with hierarchical data use a variety
of terms and definitions that makes it hard to compare their approaches. For instance,
Sequential EMM [131, 138] is proposed for discovering subgroups of subsequences of (bi-
nary) itemsets and Temporal EMM [26] deploys Dynamic Bayesian Networks (DBNs). As
another example, [147, 158] both work with hierarchical attributes, but for [158] these ex-
ist in target space, whereas [147] operates in descriptive space. Moreover, the hierarchi-
cal discretization technique proposed by [147] relates to Semantic SD [118, 119, 140], who
use knowledge graphs and ontologies to traverse the search space of candidate subgroups.
These kind of differences and similarities between existing work are not immediately ob-
vious based on a quick reading and prevent further development of EMM towards impor-
tant research directions.

As a solution to this problem, we provide a unified terminology of existing EMM literature
for hierarchical data. We first define hierarchical data as a collection of measurements
taken from different types of entities, where the measurements of one type of entity are
nested in the measurements of another type of entity. We then define the hierarchical
level of the type of entity for which the subgroup should be formed as the subgroup level
and distinguish between descriptive and target attributes that abide at a lower, the same
or a higher hierarchical level. Based on this, we categorize existing literature into 9 classes:
all combinations of {lower,same,higher}× {lower,same,higher}. Naturally, EMM with IID
data will fall in the same-same category.
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Figure 3.1: Toy example: discovering subgroups with exceptional linear relations in hierarchical data.

To illustrate the importance of taking into account a possibly nested data structure, we
give a toy example in Figure 3.1. Regression is frequently used as target model in EMM
[53, 54, 121, 143]: the goal becomes to find concisely defined subgroups where two (or
more) target columns of the dataset display an unusual linear relation, as measured by
(linear) regression. The figure displays a scatter plot of the target space; subspaces of
the dataset contributing to subgroup definition are not shown. The data contains j =
{1,2, . . . ,10} measurements per person i ∈ {1,2, . . . ,9}. The marginal means of x and y dif-
fer per person, but overall the linear regression model has a negative coefficient (whether
we average over N = 90 data points or n = 9 persons). Now, if our interest is in finding
subgroups of persons with an exceptional relation between x and y , an EMM procedure
ideally selects persons i ∈ {1,2,3}; they have a horizontal regression equation. However,
if we construct the data as a 90× 2 flat table, the search algorithm will rather select all
the data points belonging to person i = 8 and consider that to be the top-1 exceptional
subgroup. Then, it is easy to conclude that there exists a subgroup with a strongly positive
relation, but really such a relation only exists within one person, and not within a subgroup
of persons. Hence, a more careful consideration of the relative hierarchical level on which
our observations, our subgroup definitions, and our target models lie, has the potential to
lead us to more interesting conclusions.

In sum, our contributions include: 1) a unified terminology for EMM for hierarchical data,
2) a classification of existing EMM literature using this terminology, including a category
for IID data and 3) an overview of interesting future research directions.

3.2 Background
Generally in DM, we start with the availability or definition of a dataset. In this section, we
take one step back and look at how a dataset is a collection of observed measurements and
a degree of uncertainty around those measurements. We then give a short recap of tradi-
tional terminology in EMM (more can be found in Section 2.3) and explain why existing
definitions intuitively suggest that data is IID rather than non-IID.
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3.2.1 Independent and identically distributed sequences
Given a probability space (Ω,Σ,P), A Random Variable (RV) X : Ω→ X is a function that
maps the sample space to a state space. Once an RV is introduced, the sample space Ω
is no longer important; it suffices to list the possible values of X and their corresponding
probabilities by means of distribution functions. Probability distribution p(X ) is a prob-
ability mass function (pmf) or probability density function (pdf), depending on whether
the state space is discrete or continuous. Naturally, many distinct RVs may be defined
over the same sample space. We call these multivariate RVs and denote them as a vector
X = (X1, . . . , Xd ) with state space X =X1 × . . .×Xd [45].

A sequence of RVs X 1, . . . , X N is Independent and Identically Distributed, also written as
i.i.d, iid, or IID, when every X i has the same distribution and X i is independent of X j ,
that is, X i does not influence the value of X j and vice versa.1 The advantage of an IID
sequence is that we can discover characteristics of the distribution of X i , such as the mean
E[X i ] or variance V[X i ], by averaging over the N RVs [45].2

When working with a dataset D , we commonly assume D = {x1,x2, . . . ,xn} to be an IID
sample of size n. We may also write that we consider X to be a vector of RVs taking values
in X and that dataset D = {x1,x2, . . . ,xn} is a collection of n independent draws from X .
In both formulations, RV X i is “the result of the i th repetition of a particular measurement
or experiment” [45, p.181]. When defining data, we consider such measurement or exper-
iment to be one observations of a univariate or multivariate RV. However, the central limit
theorem also allows us to extend the principle to summary statistics or to the parameter
estimates of a descriptive (or predictive) model.3

3.2.2 Local patterns
Summary statistics or descriptive models may not adequately convey all interesting infor-
mation on a target variable Y . Two famous illustrative examples are Anscombe’s quartet
[5] and Simpson’s paradox [183]. Both examples demonstrate that efficiently estimating a
population parameter θ not necessarily ensures that estimate θ̂ provides a good descrip-
tion of that population.

1Note the use of a superscript to clearly indicate a difference with the notation used for a multivariate RV. In
other words, X i may be a univariate or multivariate RV.

2The law of large numbers and the central limit theorem state that as N →∞, the difference between the esti-
mated values and the true values approximates 0; subtle differences exist between the law of large numbers and
the central limit theorem.

3From a sampling theory perspective, we aim to summarize the behavior of a target population U = {1,2, . . . , N }
of N elements by means of population parameters; these are numerical indicators that depend on the values
Y1,Y2, . . . ,YN of a target variable. Formally, a sample is a sequence of indicators a = (a1, a2, . . . , aN ) where ak
is the number of times that element k is selected in the sample. A sampling design p assigns to every possible
sample a a probability p(a) of being selected. We then summarize the behavior of the target population using
estimators; an estimator t for a population parameter θ is called an unbiased estimator if E[t ] =∑

a∈A t (a)p(a) =
θ. The variance of an estimator t is equal to V[t ] = E[(t −E[t ])2]. Hence, by definition, an estimator t is an RV
itself. Consequently, an estimator has a normal distribution with as expected value the population parameter
θ and V(t ) as the variance. This approximation works better as we draw more samples a ∈ A; Of course, in
practice, we only draw one sample of size n and estimate the variance of estimator t using the sampled values.
The variance can be estimated more precisely when the sample size n increases [22].
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In EMM, we distinguish global patterns, that cover most instances in the data, from local
patterns, that cover small parts of the data space, deviate from the distribution of the pop-
ulation and show some internal structure [54, 74, 139]. The framework of EMM aims to 1)
discover subsets in the population somehow behave exceptionally and 2) describe these
subsets in interpretable terms; they are then called subgroups [54].

Formal terminology and definitions for EMM were given in Section 2.3. Essentially, EMM
assumes a datasetΩ to be a bag of n records r ∈Ω of the form

r = (a1, . . . , ak ,ℓ1, . . . ,ℓm), (3.1)

where k and m are positive integers. In EMM, we call a1, . . . , ak the descriptive attributes or
descriptors of r , and ℓ1, . . . ,ℓm the target attributes or targets of r . For SD, m = 1, whereas
for EMM, typically m ≥ 2. Definitions of a subgroup (Definition 2.1) and a quality measure
(Definition 2.2) were given in Section 2.3.

A schematic illustration of a dataset commonly used in EMM was given in Figure 2.1 for
n = 5, k = 4 and m = 3. It is important to note that formal EMM definitions are agnostic
about the origin of the data: whether or not record r i is independent from record r j , and
whether or not the data should be formatted as a flat table. However, most commonly,
dataset Ω is formatted as in Figure 2.1: the table rows contain records “i ∈ D , referred to
as individuals, taken from a domain D” [121, p.3] and columns represent attributes. It
then makes sense to consider each record to be an independent observation xi = (ai ,ℓi ) =
(ai

1, ai
2, . . . , ai

k ,ℓi
1,ℓi

2, . . . ,ℓi
m), drawn from a multivariate state space X =A ×L where “de-

scriptors are taken from an unrestricted domain A ” [54, p.52] and targets from L . In Sec-
tion 3.5.1, we give three other arguments for our premise that most existing EMM method-
ologies assume IID data.

3.2.3 Hierarchical data
In this dissertation, we consider hierarchical data, a form of non-IID data where mea-
surements of one set of RVs are nested in the measurements of another set of RVs. The
concept is well-known in the social and biomedical sciences and stems from the idea that
individual persons are influenced by the social groups or contexts to which they belong
(and vice versa) [84, 125, 187]. For example, self-rated health may relate to the population
density of neighborhoods [125] and students’ performance may depend on the skills of
their teacher [84]. The individuals and social groups are conceptualized as a hierarchical
system of individuals nested in groups, and groups nested in larger groups. The shared
context introduces a correlation structure between individuals belonging to that context
and the assumption that data is IID is violated.

Figure 3.2 gives a schematic illustration of such a dataset. Here, values of attributes a11

and ℓ11 are nested in the values of attributes a21 and ℓ21, which again are nested in the
values of attributes a31 and ℓ31. Figure 3.2 thus depicts hierarchical data with three levels.

In hierarchical data, the lowest level is not necessarily that of the individual. As a real-
world example of Figure 3.2, consider a series of blood glucose measurements sampled
from n = 5 patients. Patients i ∈ {1,2,3} are treated by one doctor, whereas patients i ∈
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Figure 3.2: Schematic illustration of a hierarchical dataset with three levels. Attributes a11 and ℓ11 reside
at the lowest hierarchical level, attributes a21 and ℓ21 reside at the second level and attributes a31 and
ℓ31 reside at the highest hierarchical level. In the context of EMM, we distinguish descriptive attributes
(blue) from target attributes (green).

{4,5} are treated by another doctor. We may denote the blood glucose measurements of
patient i ∈ {1,2, . . . ,n} as zi = (zi 1, zi 2, . . . , zi tz ), where t ∈ {1,2, . . . , tz } is the t th hospital visit.
In Figure 3.2, this is represented as one tuple for row i in column ℓ11 (e.g., t 1

z = 4). Further-
more, patients may be described by a feature vector xi = (

xi
1, xi

2, . . . , xi
d

)
. In Figure 3.2, only

the first value of this feature vector is shown as ai
21. The other values would appear under

attributes a22, a23, ... and so on.

Often, we consider n individuals to be IID, that is, p
(
X1, . . . ,Xn

) = ∏n
i=1 p

(
Xi

)
. However,

since the blood glucose values are nested, the t 1
z + t 2

z + ...+ t n
z blood glucose values should

not be considered independent, that is, p
(
Z1, ...,Zn

) ̸= ∏n
i=1 p

(
Zi

)
. If the observations at

the lower hierarchical level represent independently drawn entities, we can assume that
the nested measurements are IID given the observations of the higher level entity. This
applies, for instance, when students are nested in school classes, or when survey respon-
dents are nested in neighborhoods.

In the context of repeated measurements. we could theoretically assume that there is no
effect of time (i.e., the blood glucose values do not depend on the measurement occasion).
Then, we may assume the nested measurements are IID given an individual patient. We
write p

(
Z1,Z2, . . . ,Ztz | X

) = ∏tz
t=1 p

(
Zt | X = xi

)
. However, it is likely that for time-varying

data, such an assumption does not hold.

3.3 Related work
Several authors have provided unified terminologies and hierarchies for DM. At the second-
ever edition of KDD, [58] distinguished Knowledge Discovery in Databases (KDD) from
DM. Here, KDD would be the “overall process of discovering useful knowledge from data,
while data mining refers to a particular step in this process” [58, p.82]. In this distinc-
tion, data selection, data preparation, and appropriate interpretation of the results, are all
crucial steps in the KDD process.

Zooming in on pattern mining, an umbrella paper on Supervised Descriptive Rule Dis-
covery [110] unifies contrast set mining (CSM), emerging pattern mining (EPM) and SD.
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Zooming in further, surveys on SD are available [8, 76, 80]; regarding EMM, the paper that
comes closest to a survey paper is [54]. Since these works were published, both SD and
EMM have further developed, especially towards the discovery of subgroups in datasets
that have some form of hierarchical structure. In this chapter, we provide a unified termi-
nology for EMM for such type of work.

In this chapter, we build on terminology from multiple domains. As introduced before, we
build on terminology in multilevel analysis (MLA), which is particularly well-known in the
biomedical and social sciences and adopts the concept that individual persons are influ-
enced by the social groups or context to which they belong (and vice versa) [84, 125, 187].
The individuals and social groups are conceptualized as a hierarchical system of individu-
als nested in groups, and groups nested in larger groups. Since RVs may be defined at any
hierarchical level, a dataset has a hierarchical or nested structure [84].

Furthermore, we build on terminology in relational databases (RDBs). An RDB is a col-
lection of row-by-column tables (or, relations) where each table contains information on
one entity type. Rows are also called tuples, and columns are attributes. Originally and
most commonly, RDBs follow the First Normal Form (1NF) that no attribute domain has
relations as its elements [33]. Hence, we refer to single-table data (cf. Figure 2.1) as an IID
dataset. Furthermore, an entity-relationship model (ER) for an RDB classifies the things of
interest as entity types, and specifies which relationships exist between entities (instances
of the types) [31].

In this dissertation, we consider data to have a hierarchical or nested structure if the en-
tities have one-to-many relationships. Note that the distinction between one-to-many
and many-to-many relationships is not necessarily determined by the data itself, but also
by the domain-specific interpretation and definitions of the entities, entity types and the
attributes. In our unified terminology, we aim to classify existing work based on the expla-
nation of the relation between concepts provided by the authors.

Our unified terminology demonstrates that EMM for hierarchical data requires some form
of data manipulation. We come across different approaches such as joining RDB tables in
a long (stacked) flat-table format (Section 3.5.1) or applying some form of aggregation or
propositionalization [60] (Section 3.5.3). Hierarchical data formatted as in Figure 3.2 has
similarities with the idea of Nested Relations where the assumption of 1NF does not hold
and relations may have attribute values that are relations themselves [166].

3.4 Our proposed unified terminology
Formal terminology in EMM is agnostic about the origin of the data and whether or not
record r i is independent from record r j . The term record is deliberately abstract: depend-
ing on the application domain, they may be objects, patients, sensors or something else.
Nevertheless, datasetΩ generally consists of n independent entities and is formatted as in
Figure 2.1 where each row contains an entity. Then, subgroup descriptions based on se-
lection conditions filter out entities and subgroups are independent of their complement.

We extend EMM definitions to include data with a hierarchical structure. We first define a
hierarchy following [19]:



3

34 Our proposed unified terminology

Definition 3.1 (Hierarchy cf. [19]). A hierarchy (tree) H is a tuple H = (E ,≤,e0) where:

• E = {e0,e1, . . . ,eN } is a set of items,

• ≤ is a partial order relation defined over this set,

• ∀e ∈ E : e0 ≤ e (item e0 is called the root of H ), and

• there is only one path from e0 to any other item: ∀ei ,e j ,ek ∈ E : ei ≤ ek ∧ e j ≤ ek =⇒
ei ≤ e j ∨e j ≤ ei .

We then use this definition as the fundament on which we build a definition for what
makes a dataset hierarchical. We define hierarchical data as a collection of measurements
taken from a set of entities E :

Definition 3.2 (Hierarchical data). Consider a collection of measurements from a set of
entities E. We refer to these measurements as hierarchical data when the entities can be
organized as a hierarchy H = (E ,≤,e0) such that each of the entities is associated with an
entity type cd ∈ C = {c1,c2, . . . ,cC }, entities at the same level have the same entity type, and
the depth of the hierarchy H is C . The leaf entities are associated with entity type c1, this is
the lowest hierarchical level. The measurements at level d are nested in the entities of entity
type cd+1. The root e0 is the population and is not associated with an entity type.

Figure 3.3 gives an example of hierarchical data formatted as a long table. Figure 3.4 dis-
plays its associated hierarchy H . There are three entity types C = {c1 = t ,c2 = i ,c3 = h}.
As an example, consider repeated measurements nested in patients, nested in hospitals.
The lowest level does not necessarily have to be time. Consider an example where C =
{person,household,neighborhood} or C = {student,program,university}.4 In Figures 3.3
and 3.4, entities e1 and e2 are of type h, entities e3, ...,e7 are of type i and entities e8, ...,e23

are of type t . If h, i and t are used as indicators, it is more common to start counting from
1 at every level (h ∈ {1,2}, i ∈ {1,2,3} and t ∈ {1,2,3,4}, see Figure 3.3).

Each entity type cd ∈C has an associated set of RVs. In the context of EMM, we distinguish
descriptive RVs from target RVs. The set of descriptors is A = {A(d)}d∈{1,2,...,C }, where A(d)

are the descriptors at level d . Not all levels need necessarily have descriptors attached to
them, but an RV describes only one entity type. To be consistent with EMM terminology,
we refer to the observed measurements as attributes rather than RVs. We then write ad j to

refer to the j th attribute measured at level d , for d ∈ {1,2, . . . ,C } and j ∈ {1,2, . . . ,kd }, where
kd is the number of descriptors at level d . For instance, attribute a31 (a23) is the first (third)
attribute to measure information of entities belonging to entity type c3 = h (c2 = i ). The
same notation applies to target attributes.

For EMM with hierarchical data, one must be certain and clear about which entities should
be grouped together in candidate subgroups. If there are multiple entity types, subgroups

4The distinction between entity types and categorical variables is not well defined. In general, we say that entities
form a new hierarchical level if they can be sampled [125]. For instance, we can sample neighborhoods, schools
and hospitals but not ethnic groups or genders. The latter are attributes associated to entities of the entity type
individual. In some scenarios using a categorical variable to define a new hierarchical level can be considered
legitimate, since such an approach closely connects to stratified sampling. In this dissertation, we assume such
a scenario in Section 6.7: survey respondents are nested in nations.
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Figure 3.3: Hierarchical data formatted as a long (stacked) table.
Associated hierarchy H is displayed in Figure 3.4.

of entities can be formed for any of these types. For instance, we may be interested in dis-
covering exceptional behavior of hospital visits (e.g., visits with extremely low lab values),
patients (e.g., patients with below average treatment effects) or hospitals (e.g., hospitals
with high mortality rates). We propose the notion of subgroup level, the hierarchical level
of the entity type for which subgroups should be formed:

Definition 3.3 (Subgroup level). Consider hierarchical data. The entity types are C =
{c1,c2, . . . ,cC }. The subgroup level is the hierarchical level d of the entity type cd ∈ C for
which we aim to discover exceptional subgroups of entities. The number of entities at the
subgroup level is denoted with n.

Almost all work on EMM uses “conjunctions of selection conditions on descriptors A” as
description language D. In EMM with hierarchical data, data formatting choices interact
with this description language. For instance, in the long format of Figure 3.3, the num-
ber of rows equals the number of entities at level c1: the rows are associated with lowest-
level entities. Consequently, a selection condition on attribute a31, as traditionally used in
EMM, will filter out single measurements. In contrast, a selection condition on attribute
a21 (which describes entities at a higher hierarchical level than the level that corresponds
to the rows) selects all rows belonging to the covered entities at level c2. That is, the com-
plete sub-trees of the covered entities are selected.

One could re-format the data such that every row contains information on entities of type
c2, as depicted in Figure 3.2. Here, the representation of attributes a31 and ℓ31 is with
tuples rather than single values. In this format, a selection condition on attribute a21 filters
out patients as single rows (rather than as groups of rows as before in Figure 3.3). In other
words, the format in Figure 3.2 can be used to discover subgroups at level c2, while the
long flat-table format works better for discovering subgroups at level c1.



3

36 Classification of existing literature

e0population:

e1 e2

e3 e4 e5 e6 e7

e08 e09 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23

Figure 3.4: Hierarchy of the entities in the schematic datasets presented in Figures 3.2 and 3.3. The
dataset contains three entity types C = {c1 = t ,c2 = i ,c3 = h}. Entities e1 and e2 are associated with entity
type c3 = h, entities e3, ...,e7 are associated with type c2 = i and entities e8, ...,e23 are of type c1 = t .

In our unified terminology, we always format hierarchical data as in Figure 3.2. We ensure
that the rows represent the entities of the chosen subgroup level (cf. Definition 3.3). Sub-
sequently, we determine whether the existing descriptive and target attributes reside at a
lower, the same, or a higher hierarchical level than the subgroup level.

Definition 3.4 (Lower level attribute). Consider hierarchical data with entity types C =
{c1,c2, . . . ,cC } and a pre-defined subgroup level d∗ of entity type cd∗ . A descriptive attribute
ad j or target attribute ℓd j is a lower level attribute if d < d∗ for d ,d∗ ∈ {1,2, . . . ,C }.

Definition 3.5 (Same level attribute). Consider hierarchical data with entity types C =
{c1,c2, . . . ,cC } and a pre-defined subgroup level d∗ of entity type cd∗ . A descriptive attribute
ad j or target attribute ℓd j is a same level attribute if d = d∗ for d ,d∗ ∈ {1,2, . . . ,C }.

Definition 3.6 (Higher level attribute). Consider hierarchical data with entity types C =
{c1,c2, . . . ,cC } and a pre-defined subgroup level d∗ of entity type cd∗ . A descriptive attribute
ad j or target attribute ℓd j is a higher level attribute if d > d∗ for d ,d∗ ∈ {1,2, . . . ,C }.

For example, in Figure 3.2, the subgroup level is c2. Then, attribute a31 resides at a higher
hierarchical level, a21 at the same level and a11 at a lower hierarchical level than the sub-
group level.

3.5 Classification of existing literature
We categorize existing EMM literature into 9 boxes based on whether the descriptive and
target attributes reside at a lower, the same, or a higher hierarchical level (see Table 3.1).
We believe such a categorization is needed because current literature on EMM for non-
IID data use a mixture of notation, terminology, and re-formatting and pre-processing
solutions. This obscures an overview of existing approaches, preventing comparison of
approaches and identification of research gaps.
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Table 3.1: Categorization of existing EMM methodologies. Descriptors and targets can
be measured at a lower, the same or a higher hierarchical level than the subgroup level
(which is given).

Targets
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Methodology

We systematically search for existing work on EMM with non-IID data. We select relevant
papers in the following order: 1) we are already familiar with the work and know it re-
lates to SD or EMM (78 papers), 2) they are cited by work that we assigned to Boxes A-I
(but not E) (+13 papers), 3) they cite work that we assigned to Boxes A-I (but not E) (+16
papers) and finally, 4) they cite [54] (+6 papers). Next, we translate the paper using our
unified terminology; that is, we determine whether the work uses hierarchical data, what
is the subgroup level, and whether the attributes reside at lower, the same, or higher hi-
erarchical levels. While categorizing, we focus on information provided in the notation
and terminology sections of the paper, the explanation of the descriptors, the explanation
of the target model and if still unclear, the description of the datasets. Categorization of
papers was done by two authors.

Next, we discuss the boxes one by one in the following order: E (descriptors and targets
reside at the subgroup level) → D, G (lower level targets) → F (higher level targets) → B, A
(lower level descriptors) → H (higher level descriptors). We provide additional discussion
for papers that we assign to a box, but whose box membership is not as clear cut as it is for
the other papers; such assignments are marked by an asterisk.

3.5.1 Box E: descriptors and targets reside at the subgroup level
All instances of SD and EMM that were developed for IID data can be assigned to category
E in our unified terminology: the subgroup level equals the level of the descriptors and the
targets. Essentially, IID data has only one entity type, and all attributes are measured for
that particular entity type. For instance, [121] use the Windsor housing data to discover
subgroups of houses with an exceptional relation between the lot size and sale prices and
[54] analyze the association between race and completion of a vaccine regimen. The IID
nature of datasets is not always directly clear. For instance, [54] describe a Gene dataset
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that shows the expression level of 313 genes for 63 patients. A first glance, the dataset may
appear nested (i.e., genes nested in patients), but close reading reveals that the genes’
expression levels are the descriptive attributes.

An interesting edge case is [17], who analyze the European Parliament Voting (EPV) dataset
which contains information on a set of parliamentarians, a set of ballots, and the out-
comes of votes of certain parliamentarians for certain ballots. Following RDB terminol-
ogy, this dataset contains tables of two entity types with a many-to-many relationship.
In practice, [17] search the two tables separately, discovering descriptions of parliamen-
tarians (called, a group) and descriptions of ballots (called, contexts). They match these
descriptions such that the contextual intra-agreement of a group is exceptional with re-
spect to the non-contextual, overall agreement of that same group. We therefore classify
this approach in Box E.

Overall, we have three reasons for arguing that most work on SD and EMM use IID data:

1. The proposed target models compare a subgroup to its complement using statistical
quality measures that assume independence of observations,

2. The description language filters out rows, and the definition of a row is often equal
to the definition of an individual (e.g., subgroup of patients, where every row is a
patient), and

3. Many of the experiments use datasets with an IID nature.

Since Box E is the default box, we will not exhaustively enumerate all SD and EMM papers
belonging to this box.

Box E∗: Reformatting hierarchical data into flat-table data

Some papers employ hierarchical data but belong to Box E anyway. These are the papers
that format the hierarchical data in a long flat-table format (as in Figure 3.3) and use de-
scriptors and targets that reside at the lowest hierarchical level, that is A = A(1) and L = L(1),
respectively. Within this category, we can distinguish between two types of work.

On the one hand, some papers present their data as a row-by-column flat table but do not
explicitly mention whether rows are considered independent. Astute readers may con-
sider some of the experimental data to be hierarchical. In that case, there is an increased
risk of unintentionally finding nested subgroups (cf. the example in Figure 3.1). For in-
stance, [10] analyze real-world data from the WideNoise smartphone app where each data
point includes objectively measured noise in decibel and an associated subjective percep-
tion of the noise plus a set of tags to provide semantic context, both given by the user. The
risk is that the same user provides multiple data points and as a consequence, the descrip-
tion of discovered subgroups may not be as representative as solicited. Other examples are
[50], who aim to discover subgroups of tweets (posts) with exceptional spatio-temporal
behavior using a Bayesian non-parametric model that assumes the posts to be indepen-
dent, and [106], who analyze exceptional claiming behavior in pharmacies by assessing
claims (lowest-level) of one pharmacy relative to many other pharmacies (higher-level).
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On the other hand, some papers explicitly mention the nested structure of their data.
Eventually, after the data preparation, the subgroup level is at the lowest hierarchical level.
An example is [124], who analyze sequences of states and introduce 1st order Markov
Chains (MCs) as a model class. The authors specifically mention that they change the
subgroup level: “we split the given state sequences in order to construct a tabular dataset,
in which each instance corresponds to a single transition” [124, p.712].

Another example is [85], who convert time series into slices, and summarize each slice
using features such as descriptive statistics and measures of complexity, the number of
peaks or extreme points and auto-correlation. Some of these characteristics are used in
descriptive space; others in target space. Specifically, the time series originate from speech
and video recordings of 27 meetings, each consisting of 3-4 participants. Hence, the data
has a clear hierarchical structure, but the exceptional subgroups contain the lowest-level
entities: the slices. This allows the authors to discover patterns such as “low amounts of
movement might be indicative of complex speech dynamics” [85, p.11]. At the same time,
interpreting subgroup descriptions at a higher hierarchical level than the subgroup level
is non-trivial; [86] use visualization techniques to do so.

3.5.2 Hierarchical target attributes
Box D: Lower level targets

The target attributes in an EMM instance may contain measurements at a lower hierar-
chical level than the subgroup level. For instance, [26] use a Dynamic Bayesian Network
(DBN) containing three temporal RVs in target space, to discover exceptional subgroups
of applications submitted to the European Union. Each application is considered inde-
pendent (with descriptors such as land area, department, year of submission). In target
space, each application has a series of workflow activities (i.e., events) related to it. Hence,
the entity type event is nested in the entity type application. The work by [26] differs from
[56] (which is assigned to Box E), since the nodes of the BNs used in [56] represent single
RVs, whereas the variables in a DBN are repeatedly measured over time.

From a different perspective, [26] aggregate from a lower hierarchical level to the subgroup
level by first, selecting all target data of the entities that are covered by the subgroup de-
scription and second, evaluating the parameters of a model estimated on those lower-level
measurements. In contrast, [143] first estimate a mixed effects model per subgroup-level
entity (using the lower-level target attributes) and then discover subgroups of exceptional
parameter estimates. All target models discussed so far (DBNs, MCs, mixed effect models)
are particularly well-suited for analyzing hierarchical data.

A series of work discuss Exceptional Preferences Mining (EPM) [42, 156, 204]; an approach
for discovering subgroups of entities (districts) with an exceptional label ranking (the or-
der of parties after elections). The party ranking is nested in the districts. A similar study
was presented by [72], who additionally use collected statistics from survey data to capture
the descriptive attributes of each district. Although the statistics are aggregations based
on measurements from lower-level entities (persons within the districts), we assign [72] to
Box D since those lower-level values were likely not available for analysis.
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Box D∗: Exceptional subgraph mining

Mining exceptional subgraphs belongs in Box D, but often in a nontrivial manner. For
instance, [9, 20, 21, 47] discover exceptional subgraphs using descriptive attributes of the
vertices; [98] use attributed edges. We classify these works separately since 1) they only use
descriptive attributes and no target attributes (exceptionality of subgraphs is evaluated
using quality measures based on e.g. density, community-detection algorithms, modu-
larity, Weighted Relative Accuracy (WRAcc)), and 2) a graph structure is non-IID but not
necessarily hierarchical. With a bit of creativity, we could consider a directed graph to be
a collection of measurements on entities of two entity types: vertices and edges, where
measurements on edges are nested in vertices. Under certain constraints, we could do a
similar thing for undirected graphs. All in all, exceptional subgraph mining mostly ana-
lyze datasets where each node is an independent individual, subgroup descriptions cover
nodes, and the target model is a non-IID structure nested in the nodes. We therefore clas-
sify this category of work as D∗. Remark that our selection of papers is non-exhaustive;
exceptional subgraph mining is a large sub-domain of EMM.

In the same sub-category, we explicitly mention [95], who have a “dataset of entities, each
of which contains an arbitrary structure”. In descriptive space, entities are independent
and selected using descriptive attributes. In target space, [95] propose a method to dis-
cover subgroups with deviating structure as either a clustering in the given reproducing
kernel Hilbert space, or the most anomalous subgroup within that space. Their method
is generic, and can be applied to entities with different structure, such as a graph, time
series, or molecules.

Box G∗: Describing communities using ontologies

Furthermore, [185] discover exceptional subgraphs in a 2-step procedure. First, they dis-
cover communities in a knowledge graph and second, they describe these communities
using ontologies (which can be considered a higher level descriptor). Therefore, we clas-
sify [185] in Box G∗. In Section 3.5.3, we will discuss using ontologies in descriptive space
in more detail.

Box F: Higher level targets

Recently, [158] proposed mining Java memory errors using EMM with hierarchical tar-
gets. Specifically, the authors analyze OutOfMemory errors (each error is an indepen-
dent entity) by analyzing how memory in a Java Virtual Machine is divided over a set of
classes. These classes are organized hierarchically in packages. For instance, package
J.L.reflect.Method is nested in J.L.reflect.*, which is nested in J.L.*). In our
unified terminology, the packages are the set of target attributes L = {L(1),L(2), . . .}, where
every RV L is a counter (i.e., integer type). We consider the entities of interest to be at
the lowest hierarchical level (since we know the memory of the lowest-level packages) and
targets reside at higher hierarchical levels: [158] is assigned to Box F.
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Box F∗: Higher level targets without descriptors

The work by [19] leads [158] but does not use descriptors.

3.5.3 Hierarchical descriptive attributes
Box B: Lower level descriptors

Interestingly, most existing literature considering lower-level descriptive attributes are SD
papers that assume one categorical target attribute and use a quality measure related to
Weighted Relative Accuracy (WRAcc). In fact, a few of the first papers on SD address the
discovery of subgroups in multi-relational data [103, 209]. To that end, [209, p.80] first
define “a designated object relation intended to be the master relation of the population
of interest” (similar to our notion of subgroup level as in Definition 3.3) and then use a
sampling technique to filter the appropriate target data without joining all possible rela-
tions. Alternatively, [103] traverse the search space by using a set of aggregation functions
such as count, average, max, and min, additionally exploiting a pre-defined relation graph
that determines which joins are selected. Both [209] and [103] do not actively change the
format of the data; that is, they work with the RDB structure.

Transforming an RDB into a single-data-table representation by way of propositionaliza-
tion leads to Relational SD (RSD) [211]. Propositionalization is a flattening approach that
constructs features at the level of the individual (i.e., the subgroup level). Specifically, [211]
use Prolog queries consisting of structural predicates which refer to parts (substructures)
of the entities of interest, and create a binary table where each column represents a newly
created feature that may or may not be present for a particular entity. The binary table can
then be searched using traditional search algorithms.

Some nested data originates when data from multiple sources are combined. For instance,
[77] use a variety of discretization and aggregation functions in order to combine students’
enrollment data with data obtained from the app Moodle, which describes students’ on-
line participation in activities and resources for various courses. Other examples where
data from different sources are combined are [66], who gather data on various crises and
use a set of time-varying descriptors that preceded the occurrence of each crisis. A similar
approach was used in [114] for analyzing failed states.

So far, we have discussed two options for transforming a nested dataset with lower level
descriptors into a flat-table data: 1) transformation into a long format by changing the
subgroup level, work is placed in Box E∗, and 2) using aggregation functions to summarize
the nested measurements (in descriptive space in Box B, in both descriptive and target
space in Box A, still to be discussed). An alternative is to transform hierarchical data into
a wide flat-table data format. This was proposed by [132], who developed an anytime
algorithm for numerical time-varying descriptors and suggest dealing with time series by
composing “a set of variables X at each timestamp in T . [...] each numerical attribute
gives the value of a variable at a given time” [132, p.6].

Another approach is taken by [57], who use EMM in a Process Mining (PM) context to
discover interesting subgroups of cases in help desk event logs. Specifically, [57] transform
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a long flat-table of event logs (entity type log) into a wide flat-table format where rows
represent entities of entity type case. Then, the tuple measured for case i for an attribute
ai t

d j is represented by tid j new attributes.

An interesting approach to handling lower level descriptors is taken by [131, 138], who
adopt a description language other than a conjunction of selection conditions. Specifi-
cally, [131] and [138] discover exceptional subsequences in a dataset containing n inde-
pendent objects encompassing a sequence and a label. As is common in sequential data
mining, the subsequences discovered by [131, 138] are ordered lists of itemsets. Hence,
the coverage of an object does not depend on the strict location of an itemset in the se-
quence, but rather on a similar order of itemsets. An application of the work of [131, 138]
to PM is presented by [159].

Box A: Lower level attributes in both descriptive and target space

We found few instances of EMM that work with lower level attributes in both descrip-
tive and target space. First, [93] discovers subgroups of households by analyzing the elec-
tricity consumption in kWh of every one of nearly 5 000 households, with 30-min reso-
lution, from April 2009 to October 2010. Specifically, [93] construct consumption-related
attributes such as the averaged maximal daily consumption and the absolute difference
between the measured consumption and a profile estimate. These are then combined
with household-specific variables (descriptors at the subgroup level). By using different
aggregation approaches, [93] utilize the same sequence of electricity consumption in both
descriptive and target space.

Furthermore, [88] use SD to create interpretable explanations of top-N recommendations
made by a state-of-the-art recommender system. In target space, the N recommenda-
tions are averaged into one numerical value per user. In descriptive space, the user’s past
actions are given by sequences of items. The work by [129], who focus on top-1 recom-
mendations, leads [88] In descriptive space, both [88, 129] perform SD for each individual
user separately: the top-q results list of exceptional patterns explain the recommenda-
tions provided to an individual user. To this end, the authors generate hypothetical target
values for perturbed sequences. Furthermore, they provide two types of exceptional pat-
terns (explanations), each with a different description language. On the one hand, con-
junctions of attribute-value pairs with binary attributes describe which actions (items)
strongly impact the recommendations. On the other hand, exceptional subsequences cf.
[131, 138] (Box B) explain whether the order of the items is important.

Box H: Higher level descriptors

Instead of the entities in the dataset, the attributes can find themselves in the hierarchical
structure. We already discussed [158] who consider a hierarchy of target attributes (Box F).
Here, we focus on [118, 119, 140, 202], who discover exceptional subgroups using seman-
tic information in descriptive space. First, [118, 119] use RSD [211, itself part of Box B] to
enable background knowledge in the form of ontologies to be used in relational data min-
ing, called semantic SD or Semantic Data Mining. An ontology is a hierarchy of concepts,
such as the nesting of cities in regions in countries [202], or the nesting of protein binding
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sites in genes [118, 119, 140] The hierarchical structure of the concepts is generally given
by domain experts and every entity in the dataset has an associated value for each of the
concept types. Consequently, ontologies are valuable for traversing the search lattice ef-
ficiently. For instance, a candidate description Region = Bavaria automatically selects all
entities that reside in all cities of Bavaria.

Semantic information is also employed to discover exceptional subgroups in [16, 203].
Specifically, [203] apply traditional SD to find an initial set of subgroups, and then use
ontologies to improve the descriptions, whereas [16] construct a Hierarchical Multi-tag
Attribute (HMT) out of a set of tags associated with each entity at the subgroup level. For
instance, a ballot 4.10.04-Gender equality in the EPV dataset is nested in the collection of
ballots with tag 4.10-Social policy, which is nested in tag 4-Economic, social and territorial
cohesion. Hence, a restriction over an HMT attribute creates a set of tags, and then covers
the objects that explicitly or implicitly contain one of the tags.

In addition to using existing ontologies for describing subgroups, [147] propose a method
for creating a data-driven hierarchy of numerical intervals out of one or more numerical
descriptors. Depending on the adopted search strategy such an approach may be valuable
but other search algorithms may not require pre-discretization beforehand [135].

3.6 Research gaps
We present a unified terminology for EMM for hierarchical data. Our framework includes
existing work that discovers exceptional subgroups in attributed graphs, sequential data,
relational databases and in time series data. More work can be done. For instance, we dis-
cussed work that use ontologies and hierarchical attributes to traverse the search lattice
efficiently. It would be valuable to investigate to what extent the proposed search algo-
rithms can be generalized to include multiple ontologies and hierarchical attributes and
whether those attributes can be combined with traditional attribute types.

We found few papers that address hierarchy in both descriptive and target space. Remark
as well that Boxes C, G and I are still completely empty; Box F contains only one existing
work. Possibly, EMM could be extended to other target models that handle hierarchical
data such as location-scale models, Bayesian hierarchical models and ARIMA models.

Another interesting next step is to develop EMM to other types of non-IID and unstruc-
tured data such as image and text data. Such a research direction most likely includes the
application of dimensionality reduction, representation learning and (automated) gener-
ation of (latent) attributes in descriptive or target space. The recent kernel-based method
proposed by [95] could serve as a starting point.

Lower level descriptors are most commonly handled by applying some kind of aggrega-
tion. Usually, these aggregation functions are created based on domain-specific knowl-
edge; they are not generic. It would be interesting to explore the possibility to create ag-
gregations in a more automated, data-driven way, possibly based on the evaluation of
candidate subgroups in target space.

Lastly, we found few papers with a description language that differs from the typical con-
junction of selection conditions. It would be valuable to investigate if new description
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languages, possibly in combination with other refinement operators, could be beneficial
in further developing EMM towards non-IID data.

3.7 Conclusion
We provide a unified terminology for EMM with hierarchical data by 1) defining hierarchi-
cal data as a collection of measurements taken from different type of entities, where the
measurements of one type of entity are nested in another type of entity, 2) the notion of a
subgroup level as the hierarchical level of the entity type for which subgroups should be
formed and 3) classifying existing literature into 3 × 3 classes based on whether descrip-
tive and target attributes reside at lower, the same, or higher hierarchical levels. Naturally,
we have aimed at letting our classification cover all relevant work on SD and EMM, with
a special focus on non-IID data; there exists no guarantee that we may not have missed
something. Nevertheless, our unified terminology provides insight into many interest-
ing, existing approaches for EMM with hierarchical data and demonstrates valuable and
promising future directions.
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Mining Exceptional Transition
Behavior of Varying Order

Discrete Markov chains are frequently used to analyze transition behavior in sequential
data. Here, the transition probabilities can be estimated using varying order Markov chains,
where order k specifies the length of the sequence history that is used to model these proba-
bilities. Generally, such a model is fitted to the entire dataset, but in practice it is likely that
some heterogeneity in the data exists and that some sequences would be better modeled
with alternative parameter values, or with a Markov chain of a different order. We use the
framework of Exceptional Model Mining (EMM) to discover these exceptionally behaving
sequences. In particular, we propose an EMM model class that allows for discovering sub-
groups with transition behavior of varying order. To that end, we propose three new quality
measures based on information-theoretic scoring functions. Our findings from controlled
experiments show that all three quality measures find exceptional transition behavior of
varying order and are reasonably sensitive. The quality measure based on Akaike’s Infor-
mation Criterion (AIC) is most robust for the number of observations.

The contents of this chapter have previously appeared in Schouten, R. M., Bueno, M. L.,
Duivesteijn, W., and Pechenizkiy, M. Mining sequences with exceptional transition be-
haviour of varying order using quality measures based on information-theoretic scoring
functions. Data Mining and Knowledge Discovery 36 (2022), 379–413 [170].
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4.1 Introduction
Markov models in all their variants are frequently used to mine patterns in sequential data.
Consider, for instance, 1st order Markov chains [151, 165, 207], Hidden Markov Models
(HMM) [27, 91, 136, 148] and Dynamic Bayesian Networks (DBN) [26, 37]. All these models
are called memoryless if they satisfy the Markov property: given the data at time t − 1,
the data at time t is independent of the data before time t − 1. Furthermore, a model is
homogeneous if its parameters do not change over time, and the sequences are stationary
if the initial values follow the same model [214].

We consider discrete Markov chains where the observations are discrete values, or states,
from a countable set which is called the state-space. Generally, such a model is fitted to the
entire dataset and the parameter estimates give information about the average transition
behavior between states. However, some heterogeneity in the data often likely exists, and
hence some sequences would be better modeled separately. We use Exceptional Model
Mining (EMM) [54, 121] to discover these exceptionally behaving sequences.

EMM is a local pattern mining technique seeking subsets of the dataset that behave some-
how exceptionally. Here, exceptional behavior is measured in terms of parameters of a
model class over target attributes. A quality measure quantifies this exceptionality (see
Section 2.3). Since EMM allows for ≥ 2 attributes to be part of the target model, it can
be seen as a generalization of Subgroup Discovery (SD) [80, 102, 209], which uses 1 tar-
get attribute. Both frameworks employ a rule-based description language where resulting
subgroups are described as a conjunction of attribute-value pairs.

An EMM model class exists for 1st order Markov chains [124]. We extend their work by
considering Markov chains of varying order, where order k specifies the length of the se-
quence that is used as memory in the model. Specifically, our method allows for discov-
ering subgroups in situations where the order of the Markov chain differs between the
subgroup and the dataset. This situation requires comparing unequal numbers of param-
eters. Hence, we do not use a parameter-based quality measure, as is common in EMM,
but show how information-theoretic scoring functions can evaluate a subgroup’s excep-
tionality.

We furthermore add to existing work by seeking subgroups of sequences, as opposed to
subgroups of transitions [124]. Whereas the latter detects heterogeneity within sequences,
we find subgroups of homogeneous sequences that are heterogeneous w.r.t. the entire
dataset. Our model class is practically relevant for identifying the originator of an excep-
tional sequence, such as a patient with exceptional blood glucose fluctuations (see Section
5.5) or an atypical user session in click-stream data [164].

In sum, our main contributions include:

1. an EMM model class for detecting exceptional transition behavior of varying order,

2. a new set of quality measures based on information-theoretic scoring functions,

3. an understanding of how descriptive attributes can be used to form subgroups of
entire sequences.
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4.2 Background
The methods developed in this chapter are inspired by the second DIAbetes and LifEstyle
Cohort Twente (DIALECT-2) [67]. DIALECT-2 is an observational study of adult persons
with diabetes type 2, where blood glucose is measured every 15 minutes for a period of
14 days. Together with domain experts, we decide to discretize the continuous measure-
ments into five blood glucose levels: below range 2 (BR2), below range 1 (BR1), in range
(IR), above range 1 (AR1), and above range 2 (AR2), where range refers to desired blood
glucose values. Although discretization may result in some information loss, these 5 blood
glucose levels are the medical standard in treatment of diabetes type 2 [38]; they allow us
to analyze transition patterns using discrete Markov chains.

As a running example to aid illustration of concepts introduced in the subsequent sec-
tions, some DIALECT-2 transition patterns can be found in Figure 4.1. In Sections 5.3 and
5.5, we discuss more details on the study and present two sets of results obtained by per-
forming two analyses with our proposed methodology.

(a) Entire dataset. (b) Subgroup of patients with HbA1c category = low ∧
diabetes duration ≤ 20 years ∧ 21.3 ≤ BMI ≤ 35.7, con-
taining N SG = 22 sequences (cov: 18%).

Figure 4.1: Transition patterns of blood glucose levels. (a) The entire dataset follows a 2nd order Markov
chain. (b) The top subgroup follows a 1st order Markov model.
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4.2.1 Data structure
Assume a dataset Ω with N independent but not identically distributed sequences of dis-
crete random variables X t : t ∈ {1,2, ...,T }. The data realization at time t is denoted with
xt . Although sequence r ∈ Ω has length Tr , without loss of generality, we assume one
fixed length T for every sequence. We refer to N as the data size and write M to denote
the total number of observations, where M = ∑

r∈ΩTr = N T (note that the total num-
ber of transitions is M − N ). The set of possible discrete values is V = {v1, v2, ..., vS } for
all xt . For instance, in the DIALECT-2 dataset, N = 126, T = 1344, M ≈ 170000, V =
{BR1,BR2, IR,AR1,AR2} and S = 5.

We assume the availability of an extra set of attributes with information about the se-
quences. The are called the descriptive attributes. The full form of sequence r then be-
comes (x1, x2, ..., xTr , a1, a2, ..., am) for all r ∈ Ω. Here, m simply denotes the number of
descriptive attributes. Depending on the application, these attributes could describe per-
sonal or medical characteristics such as HbA1c category, duration of the illness and BMI
(Figure 4.1b), user session information such as browser language and timezone (if the se-
quences are click-streams) or contain meta-information about the sequences such as its
length, state-space and starting time (see Section 4.6.1). We now explain how these de-
scriptive attributes are used to form subgroups.

Exceptional Model Mining (EMM) is a local pattern mining framework, seeking subgroups
in a population that behave somehow exceptionally [54, 121]. Those subgroups have in-
terpretable descriptions and explainable circumstances under which exceptional behav-
ior occurs.

Compared to the generic terminology for EMM, introduced in Section 2.3, in this chapter
we define a subgroup such that a sequence is either covered by a description or not. We do
not allow for a sequence to be split into pieces and to be partly assigned to a subgroup. The
reason is that we want to find the originators of exceptional sequences because this could
assist domain experts in adopting appropriate policies. For instance, an interpretable de-
scription of patients could assist doctors in selecting the most useful treatment; descrip-
tions that only partly include certain patients are less helpful.

The strict partitioning between target and descriptive attributes is a powerful feature in
EMM, allowing us to form subgroups of independently distributed individuals while an-
alyzing sequential patterns. We are thus able to make subgroups of entire sequences be-
cause the descriptive attributes contain sequence-level information (see Section 4.2.1). In
contrast, [124] find subgroups of transitions, using descriptive information on the transi-
tion (or time) level.

A quality measure quantifies the difference between behavior within the subgroup and be-
havior within the entire dataset (or the subgroup’s complement) (see Definition 2.2). Gen-
erally, quality measures directly compare one or more parameter estimates, such as the
difference between estimated slopes in a regression model [53] or the difference between
estimated correlations of two target attributes [54]. Following the terminology of [188],
we call these quality measures parameter-based. Their advantage is that you immediately
know why a resulting subgroup is exceptional. However, a parameter-based approach also
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restricts the model in the subgroup to have the same number of parameters as the model
in the entire dataset. In case of Markov chains, for instance, parameter-based quality mea-
sures would not allow the subgroup to be fitted with a higher (or lower) order model than
the one that is fitted in the entire dataset. In this chapter, we therefore propose to eval-
uate a subgroup’s exceptionality using quality measures based on information-theoretic
scoring functions. We call these quality measures evaluation-based. For instance, in the
DIALECT-2 study, the entire dataset is best modeled with a second-order Markov chain, as
illustrated in Figure 4.1a, while the top subgroup is best modeled with a first-order Markov
chain, as illustrated in Figure 4.1b. Our evaluation-based quality measures can gauge the
exceptionality of the difference between these two models and their respective transition
probabilities.

4.2.2 Markov chains
We will now first introduce 1st order Markov chains, and then extend the principles to kth

order chains. In this section, we overload the symbolΩ to refer only to the target attributes
xt for all t ∈ {1,2, ...,T } and temporarily forget about the descriptive attributes. We write SG
to denote the same set of attributes for the subgroup.

Using the product rule and the Markov property that given the data at time t −1, the data
at time t is independent of the data before time t −1, the joint probability distribution of
Ω is modeled with a 1st order Markov chain by

P (Ω|θ) = P (x1,x2, ...,xT |π,A) = p(x1)
T∏

t=2
p(xt |xt−1). (4.1)

The prior distribution p(x1) is parameterized; it has an initial probabilities vector π =
[π1, ...,πS ]. The main interest is in the transition behavior between time t −1 and t , which
is parameterized with an S × S probability matrix denoted with A. Parameters αi j ∈ A
∀i , j ∈ {1,2, ...,S} are estimated using Maximum Likelihood Estimation (MLE) where

p(xt = v j |xt−1 = vi ) =αi j =
ni j∑S

j=1 ni j
. (4.2)

Here, ni j denotes the total number of transitions from source state vi to target state v j

∀i , j ∈ {1,2, ...,S}. Equation (4.2) thus practically means that we first calculate a transition
frequency matrix, and then calculate the probabilities by dividing by the sum of each row.
Consequently, ∀i

∑S
j=1αi j = 1.

Figure 4.1b shows such a 1st order transition probability matrix. The dark purple square
in the top left corner expresses the probability (which is α11 = 0.85) that the next blood
glucose level is BR2 (column) given that the current blood glucose level is BR2 (row). The
high probabilities on the diagonal indicate that patients are likely to stay at the same blood
glucose level, although patients with a current blood glucose level of AR2 are also quite
likely to transition to a lower blood glucose value (to AR1, α54 = 0.28).

The Markov chain model in Equation (4.1) assumes homogeneous sequences where the
transition parameters do not change over time [214]. If we additionally assume that the



4

52 Background

initial probabilities vector π follows that same transition model, we say the sequences are
stationary [214]. It makes sense to make both assumptions together. After all, if we assume
that the transition behavior does not change between time points 1 and T , it does not
matter where or when the sequence starts. For example, if we estimate that 30% of the
sequences move from state vi to state v j , it is also likely that 30% of the sequences start
with state vi . As a consequence, it is not necessary to separately estimate the parameters
in π. Instead, we derive the initial probabilities by normalizing over all j target states in
the frequency matrix. The total number of free parameters in a 1st order Markov chain is
therefore K = S(S −1).

However, depending on the application or for very short sequences, the starting point of
the sequence could be of separate interest. Consider, for example, a subgroup of patients
who present themselves with different symptoms than the overall patient population. In
that case, the parameters in π are separately estimated using only the data from the first
time point,

p(x1 = vh) =πh =
n(t=1)

h∑S
h=1 n(t=1)

h

. (4.3)

Here, we indicate the selection of time points in the superscript (t = 1). Separately esti-
mating initial probabilities would add another S −1 free parameters to the Markov chain.

Extending the 1st order Markov chain model to a kth order model gives the following joint
probability distribution,

P (Ω|θ) = P (x1,x2, ...,xT |θ) = p(x1) ·p(x2|x1) · ... ·p(xk |xk−1, ...,x2,x1)·
T∏

t=k+1
p(xt |xt−k ,xt−k+1, ...,xt−2,xt−1).

Such a model uses the memory of time t −1, t −2, ..., t −k to predict the state value at time
t . To understand the transition matrix, it can be helpful to consider the k-length history as
one time point with Sk possible states. Transition matrix k A is then an Sk ×S probability
matrix where value kαi j models the probability of moving towards state v j ∀ j ∈ {1,2, ...,S}
given the i ∈ {1,2, ...,Sk } k-length history. Figure 4.1a shows the probability matrix of such
a 2nd order Markov chain, where the rows represent the 52 = 25 possibilities of a 2-length
history given 5 blood glucose levels.

In higher order Markov chains, the main interest is still in the transition behavior and
under the assumption of stationary sequences, the k initial probability distributions are
often ignored. If needed, those initial probabilities can be calculated by normalizing over
the last time point in the k-length history, just as we calculated π by normalizing over all
j target states. We denote the normalization of k A down to the ℓth order with a tilde: ℓk Ã

∀ℓ ∈ {0,1,2, ...,k −1}. Its parameters are then written as ℓ
k α̃i j . For this reason, the number

of free parameters in a kth order Markov chain is k K = Sk (S −1).

In Section 4.4, we will discuss quality measures based on information-theoretic scoring
functions. These quality measures use log likelihood to quantify the goodness of fit of a
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given Markov chain. Here, we start making a distinction between two datasets: on the one
hand, the dataset for which we calculate the goodness of fit, and on the other hand, the
dataset on which we estimate the parameters of the Markov chain. We denote the latter
with a superscript; k AF refers to a kth order transition matrix estimated on dataset F . We
now calculate the log likelihood of dataset G using parameter estimates k AF by

L (P (G|k AF )) =
S∑

h=1
nG(t=1)

h log 0
k α̃

F
h +

S∑
i=1

S∑
j=1

nG(t={1,2})

i j log 1
k α̃

F
i j + ...

+
Sk−1∑
i=1

S∑
j=1

nG(t={1,2,...,k})

i j log k−1
k α̃F

i j +
Sk∑

i=1

S∑
j=1

nG
i j log kα

F
i j .

In the rest of this chapter we use L (P (SG|AΩ)) and L (P (SG|ASG )) to denote the log likeli-
hood score for a subgroup using parameter values estimated on the entire dataset and on
the subgroup respectively.1

4.3 Related work
An EMM model class for 1st order Markov chains was introduced before [124]. There, the
authors focus on finding subgroups of transitions and thus detect heterogeneity within
sequences. We propose to extend this model class such that 1) we find subgroups of entire
sequences and detect homogeneous sequences that are heterogeneous with respect to the
other sequences, and 2) we allow for discovering subgroups that are best modeled with a
different order Markov chain.

Since [124] considered the situation where subgroups follow the same 1st order model as
the entire dataset, they proposed a parameter-based quality measure related to the total
variation distance or Manhattan distance:

ωt v (1ASG , 1AΩ) =
S∑

i=1

(
S∑

j=1
nSG

i j

S∑
j=1

∣∣∣1aSG
i j − 1aΩi j

∣∣∣) . (4.4)

The quality measure ωt v can be extended to situations where the subgroup follows the
same higher order Markov chain as the entire dataset, but it cannot be used in situations
where the subgroup follows a different order model.

Model-Based Subgroup Discovery (MBSD) was proposed by [189, 190]. There, the diver-
gence between the target probability estimates and the true labels of an outcome variable
is evaluated using Proper Scoring Rules (PSR) [70]. We analyze sequential data without la-
bels, but our evaluation measures are still related to those in [190] since the information-
theoretic scoring function AIC is derived from the Kullback-Leibler divergence [28], which
is associated with the logarithmic score as a PSR [70].

1Note that while calculating the log likelihood, we use normalized probabilities for the first k time points. In
general, in this chapter we assume homogeneous and stationary sequences, except for Section 4.5.2, where we
analyze non-stationary sequences.
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In fact, for outcome variables with a probability density distribution, [188] defines a qual-
ity measure called weighted divergence where the information gain of the subgroup is cal-
culated using log likelihood as the negative of the expected loss,

ϕW D (SG ,θSG ,θΩ) =L (P (SG|θSG ))−L (P (SG|θΩ)). (4.5)

Although our quality measures based on information-theoretic scoring functions only dif-
fer from ϕW D by the addition of a penalty for model complexity, it is exactly this penalty
that allows for discovering subgroups with a different order Markov chain. In Section 4.5
we will show the difference in performance between our quality measures and ϕW D .

Several papers proposed information-theoretic scoring functions as the basis of a quality
measure. For tabular data, [127] seek exceptional location and spread in multiple real-
valued targets using a quality measure based on the information gain of subgroups that
allows the user to incorporate prior knowledge in the process. For graph data, [47] aim
to identify pairs of subgraphs with exceptional connectivity by looking at the density be-
tween the subgraphs, also allowing for the incorporation of prior knowledge.

In the context of sequence data, [26] consider dynamic Bayesian networks as model class
and use BIC to define a mismatch score between the subgroup and its complement. We
look at Markov chains, and compare the subgroup to the entire dataset because this is
conceptually easier to understand and computationally more efficient than comparing to
the subgroup’s complement.

Like [26, 124, 188], we take an approach where candidate subgroups are evaluated using
a bottom-up, heuristic search through the descriptive space. In comparison, [14] take a
top-down approach where the subgroups are hypothesized beforehand based on theory
and evaluated using Bayes Factors. [101] hypothesize two groups of sequences based on
descriptive information and distributional characteristics. The two groups are analyzed
with a Markov model and compared on their prediction accuracy.

A global approach to detecting (groups of) outliers is taken by [164], who calculate the
log likelihood scores of individual sequences under a 1st order Markov model. Specifi-
cally, they create a Mahalanobis distribution of sequences by combining these log likeli-
hood scores with meta information such as the sequence length. Although their approach
points at unusual sequences in an existing dataset, it does not describe or explain in any
other way why specifically those sequences are considered outliers. In contrast, the frame-
work of EMM is a local pattern mining technique that not only allows for interpretable
descriptions of exceptional subgroups but also for an explanation of why those subgroups
are selected.

Yet, in Section 4.5, we will compare our method against a quality measure that only uses
a globally fitted model and does not require the fit of separate models in each candidate
subgroup. In particular, we compare against a quality measure called weighted relative
likelihood [188],

ϕW RL(SG ,Ω,θΩ) = M SG ·
∣∣∣∣L (P (Ω|θΩ))

MΩ
− L (P (SG|θΩ))

M SG

∣∣∣∣ . (4.6)
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Here, the average fit of the dataset is evaluated under parameters estimated on the dataset
and compared against the average fit of the subgroup under those same parameters. Note
that M SG and MΩ denote the total number of observations in the subgroup and dataset
respectively and not the total number of sequences (see Section 4.2.1).

Recently, [138] propose Sequential Exceptional Pattern Discovery using Pattern-Growth
(SEPP) as a general approach to the problem of Sequential Exceptional Model Mining
(SEMM). Their work combines EMM with sequential pattern mining, the task to identify
frequent subsequences, and as such they develop a search strategy based on GP-growth
[123] and PrefixSpan [149]. [131] also combine sequential pattern mining with EMM, de-
veloping the MCTSExtent method building on Monte Carlo Tree Search (MCTS) [24]. Both
MCTSExtent and SEPP consider the data to be in the traditional sequential pattern min-
ing form where X t is an itemset. Such data is inherently binary: an item is present in
an itemset or not. A subgroup’s exceptionality is then evaluated in terms of frequency or
precision. In contrast, our sequences come with m descriptive attributes; subgroups are
formed using these attributes and evaluated based on exceptional sequential behavior.

We now explain how we derive our quality measures based on information-theoretic scor-
ing functions in Section 4.4. We also discuss the proposed search strategy.

4.4 Our proposed approach: Quality measures based on information-
theoretic scoring functions

In order to evaluate the exceptionality of candidate subgroups with varying order Markov
chains, we develop a set of quality measures that allows for the comparison of two sets
of parameters of different size. Such quality measures should not simply select the sub-
group with the largest number of parameters, because a more complex model may over fit
the data. The quality measures should further take the subgroup size into account, since
deviations from the norm are more easily obtained in smaller subgroups.

To that end, we base our quality measures on information-theoretic scoring functions. In
general, for a dataset G , such as scoring function is defined by

φLL(G ,θG ) =L (P (G|θG ))− f (MG ) ·K G , (4.7)

where we use subscript LL to indicate that we use log likelihood as a way to quantify the
goodness of fit. Given that θG are MLE parameters, L (P (G|θG ) is maximal. The second
part of the equation is a penalty for model complexity. Here, K G denotes the number of
free parameters in a model estimated on dataset G . The term f (MG ) is a penalty based on
the number of observations in G .

We will apply three information-theoretic scoring functions; they differ in their penalty
term. First, [3, 4, 28] derived that the bias in the log likelihood score (due to over fitting)
converges to K as M → ∞ (we temporarily leave out the superscript G). In Akaike’s In-
formation Criterion (AIC), the penalty is therefore set to K , which means that f (M) = 1.
Second, the Bayesian Information Criterion (BIC) [180] sets f (M) = 1

2 log M . In this chap-
ter, we refer to BIC as an information-theoretic scoring function because it only differs
from AIC by the extent of the penalty. However, BIC is derived from a Bayesian viewpoint,
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is related to Bayes factors [97] and originally focuses on model selection instead of pre-
diction accuracy [152]. Third, a scoring function called AIC with small sample correction

(AICc) penalizes with an additional 2K 2+2K
M−K−1 . The term corrects for over fitting if the num-

ber of free parameters is large with respect to M , but AICc converges to AIC as M increases
[28, 87, 193].

Several authors have investigated the use of AIC and BIC in determining the appropri-
ate Markov chain order [e.g., 168, 184, 195]. We use these scoring functions to evaluate
whether candidate subgroups have exceptional transition behavior. This goes as follows.

In the situation that dataset Ω is heterogeneous and contains one or more subgroups of
sequences that follow a different model than the rest of the sequences, it is likely that the
parameters of the subgroup, θSG , describe the subgroup better than the parameters of
the entire dataset, θΩ. This means that in the presence of a subgroup, the log likelihood
of dataset Ω will increase if the parameters of the subgroup are separately estimated and
evaluated. We write that

L (P (SG|θSG ))+L (P (SGC |θΩ)) >L (P (Ω|θΩ)), (4.8)

where SGC denotes the subgroup’s complement. Since L (P (SGC |θΩ)) is part of both the
left and the right side of Equation (4.8), we can write that

L (P (SG|θSG )) >L (P (SG|θΩ)). (4.9)

We now derive our quality measures by combining Equations (4.7) and (4.9). We further-
more multiply φLL with -2 for conventional reasons, and again multiply with -1 to obtain
quality measures that should be maximized (see Definition 2.2). This gives us the follow-
ing three quality measures:

ϕAIC = 2L (P (SG|θSG ))−2K SG −2L (P (SG|θΩ))+2KΩ, (4.10)

ϕB IC = 2L (P (SG|θSG ))−K SG log M SG −2L (P (SG|θΩ))+KΩ log M SG , (4.11)

ϕAIC c = 2L (P (SG|θSG ))−2K SG − 2K SG2 +2K SG

M SG −K SG −1
−

2L (P (SG|θΩ))+2KΩ+ 2KΩ2 +2KΩ

M SG −KΩ−1
.

(4.12)

Note that quality measure ϕW D as defined earlier in Equation (4.5) sets f (M) = 0 and
therefore uses no penalty. Furthermore, if the subgroup has the same order Markov chain
model as the dataset, KΩ = K SG and the penalty terms cancel out for all three proposed
quality measures.

4.4.1 Extended beam search algorithm
Beam search is a commonly used strategy to search through the space of candidate sub-
groups. It has the ability to use descriptive attributes from any domain (i.e., it can natively
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Algorithm 2 Finding the best fitting Markov chain order

Input A dataset G , a penalty p from {AIC ,B IC , AIC c}, start parameter s
Output The estimated Markov chain parameters, the Markov chain order

1: procedure BESTFITTINGORDER

2: s AG ← MARKOVCHAIN(G, order = s)
3: scores ←φLL(G , s AG , p) ▷ Equation (4.7), with penalty term replaced by p
4: counter = 1
5: while f < s do
6: ℓ= s − f

7: ℓ
s ÃG ← normalize(s AG )

8: scoreℓ←φLL(G ,ℓs ÃG , p) ▷ Equation (4.7), with penalty term replaced by p
9: if scoreℓ < scores then

10: return ℓ+1
s ÃG ,ℓ+1

11: else
12: counter = counter + 1
13: scores = scoreℓ
14: return ℓ

s ÃG ,ℓ

handle any mix of attributes that are binary, categorical or numerical without the require-
ment for static pre-algorithm discretization). The algorithm (see Section 2.3.2 and [54,
Algorithm 1, page 60]) performs a level-wise search of d levels, where at each level the de-
scriptions of a set of candidate subgroups are further refined and evaluated with a quality
measure. The w best-scoring subgroups are selected for the next level. In the end, the
algorithm outputs a list of the top-q subgroups.

In order to find subgroups with varying order Markov chains, we have to take a few addi-
tional steps to evaluate candidate subgroups. First, we have to find the Markov chain order
that best fits the entire dataset Ω. Algorithm 2 describes the procedure. As explained in
Section 4.2.2, a higher order Markov chain can be transformed into a lower order model by
normalizing the transition matrix. We use this feature to calculate the transition probabil-
ities only once using a Markov chain of order s (line 2), where s is a user-defined parameter
which we call the start parameter. In line 3, we calculate the penalized log likelihood given
penalty p ∈ {AIC ,B IC , AIC c} as described in Section 4.4. In lines 5-13, we repeatedly nor-
malize the transition matrix (line 7), calculate the new score (line 8) and check whether
the score has increased or not (line 9). The procedure returns the parameter estimates
and the Markov chain order of the model that maximizes the penalized log likelihood fit.

Algorithm 3 describes how a candidate subgroup is evaluated. First, procedure BESTFIT-
TINGORDER is repeated for the subgroup (line 2). Then, the subgroup is evaluated with
quality measure ϕAIC , ϕB IC or ϕAIC c (Equation (4.10), (4.11) and (4.12) respectively), de-
pending on parameter p ∈ {AIC ,B IC , AIC c}. Like usual, beam search returns the q best
scoring subgroups.

The worst-case computational complexity of the beam search algorithm is O (d w Z E(c +
M(n,m)+ log(w q))). Here, d , w , q are as explained earlier, Z is the number of descrip-
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Algorithm 3 Evaluating a subgroup with varying order Markov chains

Input A subgroup SG , a penalty p from {AIC ,B IC , AIC c} and according QM ϕ,

dataset parameters ℓs ÃΩ, start parameter s
Output Real number expressing the exceptionality of subgroup SG

1: procedure EVALUATINGSUBGROUP

2: u
s ÃSG ,u ← BESTFITTINGORDER(SG , p, s)

3: quality ← ϕ(SG , u
s ÃSG ,ℓs ÃΩ)

4: return quality

tors and E the worst-case number of nominal values (numerical and binary descriptors
are refined faster). Parameter c refers to the complexity of comparing two models. In our
approach, we compare the fit of the subgroup under two models (θSG and θΩ) but the pa-
rameters of the data model are calculated only once at the beginning of the beam search.
The term M(n,m) refers to the cost of learning a model M from n records on m targets. In
case of Markov chains, this would compare to fitting a kth order model for S state-values
on N sequences of length T . The computational complexity is then a linear function of
N , T and the number of free parameters K , which grows exponentially with base S and
exponent s (Section 4.2.2).

The fact that we can evaluate lower order Markov chains by normalizing higher order tran-
sition matrices is a powerful feature that keeps the computational complexity of our ap-
proach tractable. Still, parameter s is an important parameter because if s is too large,
fitting the Markov chain may take unnecessarily long; if s is too small, it is hard to evaluate
more complex models. Note furthermore that s determines which parts of the sequences
are used for model fitting. After all, fitting a kth order Markov chain can only be done with
the data from time points k + 1 to T . Although it is possible to normalize higher order
transition matrices all the way down to a 1st order Markov model, the drawback of such a
procedure is that not all observations are used for estimating the probabilities.

4.5 Experiments on synthetic data
In the following, we assess internal validity of our proposed method with experiments
on synthetic data. For varying data characteristics, we create ground truth subgroups and
analyze whether they are ranked first in the top-q result list. Specifically, Section 4.5.1 ana-
lyzes exceptional transition behavior, Section 4.5.2 analyzes exceptional starting behavior
and Section 4.5.3 contains a sensitivity analysis.

4.5.1 Exceptional transition behavior of varying order
Experimental methodology

We generate synthetic data with N = 100 sequences with T ∈ {10,50,200} time points,
S ∈ {2,5,10} states and Z ∈ {5,10,20} binary, descriptive attributes.2 The descriptive at-
tributes are sequence-level attributes, as explained in Section 4.2. For each sequence,

2Source code available at https://github.com/RianneSchouten/simulations_markov_chains_emm/.

https://github.com/RianneSchouten/simulations_markov_chains_emm/
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p(az = 1) = 0.5 for z ∈ {1,2, ..., Z }. A ground truth subgroup is defined for sequences where
a1 = 1∧a2 = 1. Thus, approximately 25% of the sequences are part of the true subgroup.
All other sequences follow a 1st order Markov chain with probabilities drawn from a uni-
form probability distribution. The probabilities are normalized to sum to 1. In line with
the assumption of stationary sequences, the first time points are sampled using a normal-
ization as well.

Two types of subgroups are generated, as specified by parameter order ∈ {1,2,3,4}.

1. If order = 1, the subgroup has an exceptional 1st order transition model. This means
that both the subgroup and the rest of the dataset follow a 1st order Markov chain,
but the parameter values of the subgroup are different. We can write that 1ASG ̸=
1AΩ.

2. If order = k for k ∈ {2,3,4}, the subgroup follows a kth order Markov model. This
means that the subgroup is best modeled with Sk ×S transition matrix k ASG while
the rest of the data is modelled with a 1st order transition model 1AΩ. Here, Algo-
rithm 2 will fit a 1st order Markov chain to the entire dataset, and the subgroups
should be fitted with a more complex model.

Every combination of simulation parameters is repeated nr eps = 50 times.

Given a synthetic dataset with a ground truth subgroup, we perform EMM with 6 differ-
ent quality measures. First, we apply the three quality measures based on information-
theoretic scoring functions as proposed in Section 4.4: ϕAIC , ϕB IC and ϕAIC c . We com-
pare our quality measures against three reference measures as mentioned in Section 4.3:
ωt v , ϕW D and ϕW RL (Equation (4.4), (4.5) and (4.6) respectively).

Sinceωt v is a parameter-based quality measure, we cannot use it to evaluate subgroups of
varying order. Instead, we will first determine the Markov chain order of the entire dataset
by applying Algorithm 2 with p = AIC and then evaluate candidate subgroups using that
same order. Similarly for ϕW RL . In case of ϕW D , p = AIC when determining the Markov
chain order of the dataset, but candidate subgroups are evaluated with p = none. Note
that since 75% of the sequences are generated with a 1st order Markov chain, it is unlikely
that we will evaluate subgroups against higher order models. However, determining the
order of the entire dataset is an important step when analyzing real-world data (see Sec-
tion 4.6).

For each quality measure, we save the rank of the ground truth subgroup in the q = 20
output of the extended beam search algorithm. Since every dataset undoubtedly con-
tains 1 ground truth subgroup, we expect the quality measures to give a first rank to that
subgroup. We furthermore check the estimated Markov chain order of the ground truth
subgroup and calculate the percentage of simulation repetitions where the correct order
is given. If the result list does not contain the ground truth subgroup, we set the rank to
q +1 and the order to NaN.

The other parameters of the beam search are w = 25 and d = 3. We furthermore constrain
the subgroup to minimally contain 10% of the sequences. Start parameter s = 4.



4

60 Experiments on synthetic data

Results

Figures 4.2 and 4.3 respectively show the rank and the order of the ground truth subgroup.
We present the results for Z = 20 descriptive attributes. Our information-theoretic based
quality measures ϕB IC , ϕAIC , and ϕAIC c give similar results and they are therefore pre-
sented in one row. Clearly, they give a first rank to the ground truth subgroup when the
sequences are relatively long (T ≥ 50). For shorter sequences (T = 10), the subgroup is
sometimes, but not always, ranked first. Here, it is easier to find the ground truth sub-
group if the state-space is small, the ground truth order is close to 1 and the descriptive
space is small (the latter is not visible in Figure 4.2).

Doubtlessly, the ground truth order of the subgroup can only be detected if there are
enough observations. First, the estimation of a kth order Markov chain requires T > k
time points, and M > Sk (S −1) observations. Second, a larger subgroup allows for a more
precise estimation of the Markov chain. For instance, for a state-space of 2, a subgroup
with a 1st, 2nd, 3rd, or 4th order Markov chain can be found when the sequences are long
(T = 200, Figure 4.3). However, when the state-space increases or the number of time
points decreases, it may not be possible to detect higher order models (even when the
subgroups rank first). Correct estimation of the Markov chain order could possibly also be
obtained by increasing the sequence length or the number of sequences N .

Next, quality measures ϕAIC and ϕAIC c are slightly more robust for the number of obser-
vations than ϕB IC . We can see this in Figure 4.3, where ϕAIC finds subgroups with a k = 2
Markov chain order when S = 5 and T = 50 or S = 10 and T = 200, or with a k = 3 order
when S = 5 and T = 200. In contrast, quality measureϕB IC finds the order in none of those
subgroups. These findings seem logical since we know that the BIC uses a larger penalty
than AIC (Section 4.4). We see no important differences between ϕAIC and ϕAIC c .

We know that ϕW D does not use a penalty. Therefore, the estimated order will always be
equal to start parameter s, since a more complex model will have a better log likelihood
fit. The only limitation is M < K , which happens when, for instance, T = 50, S = 10, and
s ∈ {3,4}. Consequently, in Figure 4.3, 100% of the subgroups with a true 2nd order Markov
model are found, but none of the subgroups with a true Markov model of other orders.
Similar results are obtained when S = 5 and T = 200.

Although ϕW D fits the wrong 2nd order Markov chain to all subgroups when T = 50 and
S = 10, almost all subgroups are still ranked first (Figure 4.2). By contrast, when T = 50 and
S = 5, subgroups are also estimated with the wrong model (3rd order), but these do not
end up in the top-20 result list. We obtain similar results for S = 10 and T = 200 (Figure
4.2). Apparently, for S = 10, the availability of longer sequences amplifies the difference
between the subgroup and the entire dataset, and estimating the wrong order therefore
disturbs the ranking, while for S = 5, the availability of longer sequences allows for a low
ranking even though the estimated Markov chain order is wrong.

The last two rows in Figures 4.2 and 4.3 display results for ωt v and ϕW RL . Both measures
evaluate subgroups using the order as estimated on the entire dataset. When T = 200,
the estimated dataset order sometimes equals the subgroup order. Then, ωt v and ϕW RL

correctly estimate the ground truth Markov chain order (Figure 4.3).
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Figure 4.2: Boxplots of the rank of the ground truth subgroup. The ideal value is a rank of 1. We
present the simulation results for 20 descriptive attributes (Z = 20) and 50 repetitions (nr eps = 50).
Results for ϕB IC ,ϕAIC , and ϕAIC c are similar and therefore presented in one row.

It may still be surprising thatωt v andϕW RL give a first rank to ground truth subgroups with
a higher order Markov chain model (Figure 4.2). The likely reason for ωt v is as follows. As
discussed in Section 4.4, the difference between a normalized and a directly estimated 1st

order transition model is that the latter uses the observations of all available time points
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Figure 4.3: Percentage of the number of simulations where the true order of the subgroup
is found. The ideal value is 100%. We present the simulation results for 20 descriptive
attributes (Z = 20) and 50 repetitions (nr eps = 50).



Mining Exceptional Transition Behavior of Varying Order

4

63

whereas the first uses only time points k + 1 to T . For long sequences, this difference is
negligible and therefore ωt v (which uses all time points) finds parameter estimates that
are close to reality. However, for short sequences with a large number of states, noise
disturbs the estimation.

Quality measure ϕW RL greatly relies on the parameters that are estimated on the entire
dataset. We see that the higher the ground truth order, the more frequently the ground
truth subgroup is ranked first (T = 50, Figure 4.3). Possibly, when the subgroup follows
a higher order Markov model, the dataset parameters are more directed towards the sub-
group’s complement than when the subgroup follows a 1st order Markov model.

4.5.2 Exceptional starting behavior
Experimental methodology

We further evaluate subgroups of sequences with exceptional initial probabilities, or ex-
ceptional starting behavior. Specifically, the subgroup follows the same 1st order transi-
tion model with the same parameter values as the rest of the data: 1ASG = 1AΩ, but it has a
distinct set of initial probabilities (Equation (4.3)), which should not be modeled with nor-
malized probabilities but with a separate set of probability values: πSG ̸= 0

1ÃSG . We thus
reject the assumption of stationary sequences (see Section 4.2.2).

Here, the number of free parameters in the subgroup is S(S−1) for the transition probabili-
ties and an additional S−1 free parameters for the initial probabilities vectorπ. In practice,
such a model only makes sense when sequences are very short. We therefore decide to
run the simulation for exceptional starting behavior with parameters N ∈ {100,500,1000},
S ∈ {2,5,10}, T ∈ {2,5,10}, Z ∈ {5,10,20}, s = 1 and nr eps = 25. Search parameters are
q = 20, w = 25, d = 3 and subgroups should cover ≥ 10% of all sequences.

Results

Subgroups with exceptional starting behavior follow the same 1st order transition model
as the rest of the dataset, but have a distinct pattern for the very first time point. Figures 4.4
and 4.5 present our findings for a state-space of 5. In general, the smaller the state-space,
the more advantageous the result.

It turns out that the log likelihood based quality measures (either with or without penalty)
perform comparably in ranking the ground truth subgroup. Therefore, these measures
are shown in a single row in Figure 4.4. These quality measures give a first rank to the
ground truth subgroup when 1) there are enough sequences, 2) the sequences are not
too long and 3) there are not too many descriptive attributes. Although it is difficult for
evaluation measures ϕAIC , ϕB IC and ϕAIC c to give a first rank to a ground truth subgroup
with exceptional starting behavior, especially if the sequences are long, these information-
theoretic scoring functions do allow for a correct estimation of the Markov chain order
(see Figure 4.5). The reason is that exceptional starting behavior causes an increase in the
number of free parameters (see Section 4.2.2). As a result, for short sequences (T = 2), the
penalties are too large to counter-effect the increase in log likelihood. For long sequences
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Figure 4.4: Boxplots of the rank of the ground truth subgroup with exceptional starting behavior. The
ground truth subgroup differs from the rest of the dataset by its initial probabilities. The transition
behavior of subgroup and dataset is the same. The ideal value is a rank of 1. We present the simulation
results for 5 states (S = 5) and 25 repetitions (nr eps = 25). Results for ϕB IC ,ϕAIC ,ϕAIC c , and ϕW D
are similar and therefore presented in one row. Quality measure ωt v cannot detect exceptional starting
behavior and is therefore not shown.

however, the model fit increases sufficiently. Logically, since ϕW D does not use a penalty,
it is good at estimating more complex models (Figure 4.5).

Both ωt v and ϕW RL evaluate candidate subgroups using the same Markov chain order as
estimated on the entire dataset, which is a 1st order chain without additional initial pa-
rameters. Using such a model, ωt v never manages to rank the true subgroup first (and we
therefore omit the results from the figures), while ϕW RL achieves it sometimes when the
sequences are as short as possible (T = 2) and there are only Z = 5 descriptive attributes
(Figure 4.4).

4.5.3 Sensitivity analysis
In Section 4.5.1, we analyzed the performance of the quality measures for the setting
where the global model is fitted with a 1st order Markov chain, the start parameter s = 4,
and the subgroups are fitted with a Markov chain order between 1 and 4. The combination
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Figure 4.5: Percentage of the number of simulations where the ground truth subgroup is found. The
ground truth subgroup differs from the rest of the dataset only by its initial probabilities: transition
behavior of subgroup and dataset is the same. The ideal percentage is 100%. We present the simulation
results for 5 states (S = 5) and 25 repetitions (nr eps = 25). Results for ϕB IC ,ϕAIC , and ϕAIC c are similar
and therefore presented in one row. Quality measures ωt v and ϕW RL cannot find the ground truth
subgroup order and are therefore not shown.

of these settings allows our algorithms to find the correct order. In this section, we analyze
the sensitivity of the results to these parameter settings.

Varying global model order and varying start parameter s

First, we ask ourselves what would happen if the parameters are miss-specified such that
the algorithms are steered away from finding the correct order. Specifically, we investigate
the effect of:

1. changing the start parameter to s = 2,

2. changing the global model to a 3rd order Markov chain.

Therefore, we sample N = 100 sequences with a state-space of S = 5 and Z = 20 descriptive
attributes. We vary the length of the sequences with T ∈ {10,50,200}. The simulation is
repeated nr eps = 10 times. The beam search settings are as before.
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Table 4.1: Median (interquartile range) of the rank (q = 20) of the ground truth subgroup
using quality measure ϕAIC . The order of the global model is either 1 or 3, and the
search is started with parameter s = 2 or s = 4. We show the results for subgroups where
or der ∈ {2,3} and for sequences with length T ∈ {10,50,200}. Further, N = 100, Z = 20, S = 5,
and nr eps = 10.

T === 10 T === 50 T === 200

True SG order True SG order True SG order

Gl.order Start s 2 3 2 3 2 3

1
2 2(16) 3(3) 1 1 1 1
4 11(17) 13(20) 1 1 1 1

3
2 21 21 1 21(11) 1 1
4 21 21 1 21 1 1

Tables 4.1 and 4.2 show the median and interquartile range (IQR) of the rank of the ground
truth subgroup for quality measures ϕAIC and ϕW D respectively and for subgroups with
or der ∈ {2,3}. We first inspect the results for ϕAIC for sequences where T = 10. It is clear
that when the global model is fitted with a 1st order Markov chain, it is advantageous to
set the start parameter to s = 2 instead of s = 4. In Table 4.1, we see that the median rank
decreases from 11 (13) to 2 (3) for subgroups with a 2nd (3rd) order Markov chain. It is
surprising that we can give a high rank to 3rd order subgroups using start parameter s = 2.
Consistent with earlier findings, apparently it can happen that subgroups are considered
exceptional even when their Markov chain order is wrongly estimated. Note that these
findings hold when T increases.

When the global model is a 3rd order Markov chain and we start evaluating at s = 2, the
parameter settings forbid the algorithm to correctly estimate the parameters of the global
model. However, we see that when T is sufficiently large, ϕAIC still ranks the ground truth
subgroup first (T = 200, Table 4.1). On the other hand, when T = 50, it is difficult to find
subgroups with a 3rd order Markov chain (but considering the IQR of 11 when s = 2, some
subgroups can still be found).

For ϕW D and a global model order of 1, starting at s = 2 instead of s = 4 does not decrease
the median rank, but it does positively affect the interquartile range (T = 10, Table 4.2).
When the order of the global model increases from 1 to 3, ϕW D allows for discovering
ground truth subgroups of order 2 when s = 2 and T = 50. However, when T ≤ 50, these
subgroups cannot be found using s = 4 (and neither can subgroups with or der = 3). When
T = 200, all subgroups can be found (just as was the case for ϕAIC ).

The results for the other quality measures are not shown here but can be accessed in our
repository.3 In sum, quality measures ϕB IC and ϕAIC c perform similarly to ϕAIC (Table
4.1), although the IQR of ϕB IC is sometimes a bit larger, especially when the global model
order is 3 and T = 200. For ϕW RL , setting s = 2 instead of s = 4 is advantageous but only
when the global model is a 1st order Markov chain. When the order of the global model is 3,
ϕW RL has trouble finding the ground truth subgroup. Even thoughωt v , likeϕW RL , greatly
depends on the estimated order of the global model, ωt v has large IQRs. This indicates

3All results available at https://github.com/RianneSchouten/simulations_markov_chains_emm/.

https://github.com/RianneSchouten/simulations_markov_chains_emm/


Mining Exceptional Transition Behavior of Varying Order

4

67

Table 4.2: Median (interquartile range) of the rank (q = 20) of the ground truth subgroup
using quality measure ϕW D . The order of the global model is either 1 or 3, and the
search is started with parameter s = 2 or s = 4. We show the results for subgroups where
or der ∈ {2,3} and for sequences with length T ∈ {10,50,200}. Further, N = 100, Z = 20,
S = 5, and nr eps = 10.

T === 10 T === 50 T === 200

True SG order True SG order True SG order

Gl.order Start s 2 3 2 3 2 3

1
2 4(12) 21(4) 1 1 1 1
4 5(19) 21 21 21 1 1

3
2 21 21 1 21 1 1
4 21 21 21 21 1 1

that even when the subgroup order is wrongly estimated, the subgroup can still be found.
We saw similar results in Figure 4.2.

Altogether, for shorter sequences, it can be advantageous to decrease the start parameter
s. This applies both to 1st and 3rd order global models. In addition, when the global model
has a 3rd order Markov chain, the ground truth subgroup can still be found as long as there
are enough observations. This holds even when the starting parameter is set to two, which
forbids the algorithm from considering the correct order.

Varying subgroup size and varying description length

Second, we investigate the effect of subgroup size and description length on the perfor-
mance of our quality measures. Therefore, we vary:

1. the description length with L ∈ {1,2},

2. the probability p(az = 1) = pr with pr ∈ {0.35,0.5} for z ∈ {1,2, ..., Z }.

Recall that in Section 4.5.1, pr = 0.5 and L = 2, resulting in a subgroup that contains 25% of
all sequences. Here, we will evaluate subgroups with a coverage of 13% (pr = 0.35,L = 2),
25% (pr = 0.5,L = 2), 35% (pr = 0.35,L = 1) and 50% (pr = 0.5,L = 1). We vary the number
of descriptive attributes with Z ∈ {5,10,20}, set parameters N = 100, S = 5, and T = 50,
and we model the global model with a 1st order Markov chain. Like before, we start our
search at s = 4 and set q = 20, w = 25, d = 3 and the minimum subgroup size to 10%.
Consequently, theoretically it should be possible to discover all subgroups. We run the
simulation nr eps = 10 times.

Tables 4.3 and 4.4 present the results for quality measuresϕAIC andϕW RL respectively, for
subgroups with or der ∈ {1,4}. We do not show the results for quality measures ϕB IC and
ϕAIC c , since they give similar results as in Table 4.1. In Table 4.3, we see that in almost
all simulation settings, ϕAIC gives a first rank to all subgroups (with an IQR of 0). When
L = 2 and pr = 0.5, it is a bit harder to find the true subgroup, although it is often still
ranked second. Clearly, when the true subgroup is large, it is more difficult to distinguish
the subgroup from its complement.
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Table 4.3: Median (interquartile range) of the rank (q = 20) of the ground truth subgroup
using quality measure ϕAIC . The subgroup description has L ∈ {1,2} attributes, where the
probability per attribute is pr ∈ {0.35,0.5}. We furthermore vary the number of descriptors
Z ∈ {5,10,20} and set N = 100, T = 50, S = 5 and nr eps = 10. Results are presented for
subgroups with a true Markov chain or der ∈ {1,4}.

Z === 5 Z === 10 Z === 20

True SG order True SG order True SG order

Desc.length Prob. 1 4 1 4 1 4

1
0.5 2(1) 2(1) 1(1) 2 2(1) 1

0.35 1 1 1 1 1 1(1)

2
0.5 1 1 1 1 1 1

0.35 1 1 1 1 1 1

For ϕW RL , we have already seen that it can find subgroups with a higher order Markov
chain (cf. Section 4.5.1). In Table 4.4, we see the same effect. In addition, we see that the
larger the subgroup, the easier it is forϕW RL to distinguish the exceptional sequences from
the other sequences. For instance, for a subgroup where or der = 4, and when Z = 20, the
median rank increases from 1 to 2, to 3, and finally to 18 when the subgroup size decreases
from 50% to 35%, to 25%, and to 13%.

Results for ϕW D and ωt v can be found in the repository.3 Essentially, we find that ωt v is
fairly robust for subgroup size. For ϕW D , we see a pattern: the smaller the Z , the easier it
is to find the true subgroup. The subgroup size does not seem to influence the ranking.

In sum, our quality measures based on information-theoretic scoring functions give stable
results for ground truth subgroups of varying size. For very large subgroups that contain
≥ 50% of the sequences, the rank increases slightly but not worryingly much.

4.6 Experiments on public, real-world data
In the next section, we apply our proposed methodology to the MovieLens dataset. In
Section 5.5, we extensively assess external validity of our proposed methodology.

4.6.1 MovieLens
The MovieLens 100K dataset4 consists of 943 users, each rating at least 20 movies on an
integer scale from 1 to 5. We consider sequences of ratings per user where 20 ≤ T ≤ 737
with an average (SD) sequence length of T = 203 (139). The Markov chain uses the movie
rating values as its state space, so we have V = {1,2,3,4,5} and S = 5. Specifically, we search
for subgroups of users with exceptional rating patterns based on demographic informa-
tion (age, gender, occupation) and sequence information (sequence length T ). The idea
behind using sequence length as a descriptive attribute is to form subgroups of users who
rate a lot or subgroups of users who rate relatively little. As described before, a user’s rating
sequence is either entirely part of a subgroup, or not; we do not split sequences.

4The MovieLens 100K dataset is available at https://grouplens.org/datasets/movielens/.

https://grouplens.org/datasets/movielens/
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Table 4.4: Median (interquartile range) of the rank (q = 20) of the ground truth subgroup using
quality measure ϕW RL . The subgroup description has L ∈ {1,2} attributes, where the probability
per attribute is pr ∈ {0.35,0.5}. We furthermore vary the number of descriptors Z ∈ {5,10,20}
and set N = 100, T = 50, S = 5 and nr eps = 10. Results are presented for subgroups with a true
Markov chain or der ∈ {1,4}.

Z === 5 Z === 10 Z === 20

True SG order True SG order True SG order

Desc.length Prob. 1 4 1 4 1 4

1
0.5 11(14) 1 12(20) 1 2(20) 1

0.35 3(11) 1 12(12) 1 18(18) 2(3)

2
0.5 3 3 3(10) 3(1) 3(1) 3(1)

0.35 15(9) 8(6) 15(9) 10(9) 21 18(15)

The extended beam search algorithms are performed with parameters q = 20, w = 25,
d = 3, b = 4, and s = 4. Subgroups should cover at least 10% of all users. We adopt the
following anti-redundancy techniques from [201] as outlined in Section 2.3: a Weighted
Coverage Scheme (WCS) with γ= 0.9, Description-Based Selection (DBS) with a fixed size
of 2w = 50 and Dominance-Based Pruning (DBP). We use quality measure ϕAIC to evalu-
ate candidate subgroups.

The entire dataset is best fitted with a 2nd order Markov chain. In the top-20, we find sub-
groups of users with either a 1st or a 3rd order Markov chain. For instance, the best-scoring
subgroup selects users with occupation ̸= {other, technician} ∧ 183 ≤ sequence length ≤ 737
(cov: 16%) and is best fitted with a 3rd order Markov chain. In subgroup 2, on the other
hand, users with short sequences where 20 ≤ sequence length ≤ 73 ∧ occupation ̸= techni-
cian are selected (cov: 52%) and a 1st order Markov chain is fitted.

The results show that a quality measure that takes into account the number of free param-
eters, such as ϕAIC , allows for a flexible evaluation of candidate subgroups. It is reason-
able to assume that the entire MovieLens dataset is fitted with a 2nd order Markov chain
as a compromise between shorter and longer sequences. Evaluating candidate subgroups
based on such a 2nd order model (as would be done in the traditional EMM framework
using a parameter-based quality measure) would reduce the probability of finding pat-
terns in subgroups that contain short, or long, sequences. Although the MovieLens dataset
seemingly does not encompass meaningful relations between user demographics and se-
quence length, such patterns may exist in other datasets and can be searched for using
quality measures based on information-theoretic scoring functions.

4.7 Discussion
We proposed a method for mining sequences with exceptional transition behavior of vary-
ing order using quality measures based on information-theoretic scoring functions. On
average, the quality measures based on information-theoretic scores outperform the other
measures; they give a higher rank to ground truth subgroups, they find the correct Markov
chain order more often and they are able to detect subgroups that would otherwise not
have been found (Section 4.5.1). In datasets with many, short sequences, exceptional
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starting behavior can be detected (Section 4.5.2). For long sequences, our quality mea-
sures perform robustly with respect to the order of the global model, the start parameter,
the subgroup size, and the description length (Section 4.5.3).

In some situations, other quality measures can be valuable as well. For instance, if sub-
groups are expected to have a similar Markov chain order as the global model, quality
measure ωt v performs fine (but the information-theoretic based measures do not per-
form worse). In situations where the subgroups are expected to have a (much) higher
Markov chain order than the global model, semi-evaluation measure ϕW RL can be used.
Note that ϕW RL requires a relatively large number of observations in order to extract the
subgroup. The performance of quality measure ϕW D is a bit unpredictable, possibly due
to its sensitivity to start parameter s.

The quality measures based on information-theoretic scoring functions are flexible and
can detect subgroups whose Markov chains 1) have the same order as the global model
and 2) have a deviating order. In practice, the global model is an average over all se-
quences in a dataset, and quality measures that use a penalty based on the number of
observations M and the number of free parameters K are able to go beyond such an av-
erage. In our study, we have chosen three common penalties; AIC, AIC with small sample
correction, and BIC. However, our proposed EMM framework allows for the extension to
other penalized scoring functions in a straightforward way.

Interestingly, our findings from controlled experiments do not show much difference be-
tweenϕAIC , ϕAIC c , andϕB IC . The first two slightly outperformϕB IC when the number of
observations and the number of free parameters is large (Section 4.5.1), due to the exces-
sive penalization by the BIC scoring functions.

It is a bit unexpected that we do not see a difference betweenϕAIC and its variant for small
sample sizes ϕAIC c . When 1 < M/K < 40, the penalty in ϕAIC c is supposed to do more
justice to the uncertainty of parameter estimates than the penalty in ϕAIC [28, 87, 193].
This means that we would expect ϕAIC c to give a larger penalty than ϕAIC . A possible
explanation for the absence of the effect of such a penalty is that as soon as the true sub-
group is found, it is so distinctive from the other sequences that a larger penalty does not
bother the ranking. Another possible reason could be that with our simulation parame-
ters, we have not been able to capture the dataset characteristics for which such a penalty
would make a difference. Nevertheless, in our synthetic data experiments there are many
subgroups where M/K > 40 and then, the difference between AIC and AICc disappears
nonetheless [28, 87, 193].

For all our experiments, we use the extended beam search algorithm as presented in Sec-
tion 4.4.1. It is generally known that beam search may discover redundant subgroups.
Therefore, we applied the following three methods from [201] during our real-world data
experiments: Description-Based Selection (DBS), a Weighted Coverage Scheme (WCS)
[117] and Dominance-Based Pruning (DBP) (see Section 2.3.3). Note that in the synthetic
data experiments, we designed the simulation such that the descriptive attributes do not
overlap in coverage (i.e., binary only). Hence, redundancy did not play a role and we were
able investigate the ranking of the ground truth subgroup in a more controlled manner.
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We performed the description-based selection using a fixed size of 2w . In our implemen-
tation, description-based selection of candidate subgroups occurs before cover-based se-
lection. We think that it is reasonable to assume that starting the latter with 2w subgroups
allows for a beam that contains w diverse subgroups. We furthermore decided that γ
should not be too small in order to not be too rigorous with decreasing the quality of sub-
groups that have redundant coverage. We therefore set γ= 0.9.

The beam search algorithm requires a set of parameters that may come across as arbi-
trary. In general, we suggest to choose the parameter values such that the result list is
practical and meaningful. For one thing, this means that the result list should be diverse
[201], but it also means that subgroup descriptions should not be too long or a subgroup
should not be too small. We have chosen to set d = 3 in order to allow for descriptions that
contain at most three attributes. These descriptions can easily be remembered and inter-
preted by the domain expert and are therefore practical. Furthermore, subgroups should
be substantially large in order to adopt separate policies or treatment schemes; it seems
reasonable to form subgroups that cover at least 10% of the population.

Next, because in both synthetic and real-world data experiments, the number of descrip-
tive attributes is relatively small, we deemed w = 25 to allow for sufficient exploration of
the search space. For much higher dimensional datasets, possibly this parameter can be
increased at some additional computational expense. Last, parameter q is often deter-
mined in consultation with domain experts. In our experience, a top-20 result list is not
too long to prevent interpretation but long enough to find valuable subgroups. Note that
changing q will not actually change the results; it merely specifies the cutoff point in a list
of ordered subgroups.

4.8 Conclusion
In sum, we proposed a method for mining sequences with exceptional transition behavior
of varying order. Specifically, we use the framework of Exceptional Model Mining (EMM)
to find subgroups of sequences and propose a model class for varying order Markov chains.
Our model class allows for discovering subgroups in situations where the order of the
Markov chain differs between the subgroup and the dataset. Such a situation requires the
comparison of a different number of parameters. We therefore do not use a parameter-
based quality measure as is common in EMM, but propose three new quality measures
based on information-theoretic scoring functions: ϕAIC ,ϕB IC , and ϕAIC c .

Our findings from controlled experiments show that all three proposed quality measures
find exceptional transition behavior of varying order. They all give a first rank to the
ground truth subgroup when sequences have a length T ≥ 50. For shorter sequences, the
ability to give a first rank to the ground truth subgroup depends on the state-space, the de-
scriptive space and the ground truth Markov chain order. Naturally, the higher the Markov
chain order of the subgroup, the more observations are needed. Nevertheless,ϕAIC ,ϕB IC ,
and ϕAIC c all seem sensitive enough to detect the correct Markov chain order but sensi-
tive enough to prevent over fitting. Compared to ϕB IC , we find that ϕAIC is slightly more
robust for the number of observations. We have not seen important differences between
ϕAIC and ϕAIC c .
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Discovering Exceptional Blood Glucose
Fluctuations

In this chapter, we discover subgroups of patients with exceptional blood glucose transi-
tion behavior. We analyze sequential data from the second DIAbetes and LifEstyle Cohort
Twente (DIALECT-2). DIALECT-2 is an observational study of adult persons with diabetes
type 2, where blood glucose is measured using the FreeStyle Libre sensor, an intermittently
continuous glucose monitoring (iCGM) sensor. In this study, we discretize the continuous
measurements into five blood glucose levels and then analyze transition patterns between
these levels in two ways: 1) we analyze the full sequences and 2) we calculate the percent-
age per day that a patient has blood glucose values that are in range, below range, or above
range. With both approaches, we discover a variety of subgroups with exceptional Markov
chain transition behavior, and a variety of blood glucose fluctuations patterns. Our find-
ings demonstrate the clinical and practical relevance of the approach proposed in Section
4.4 and support clinicians in establishing individualized glycemic treatment.

The contents of this chapter have previously appeared in Schouten, R. M., Bueno, M. L.,
Duivesteijn, W., and Pechenizkiy, M. Mining sequences with exceptional transition be-
haviour of varying order using quality measures based on information-theoretic scoring
functions. Data Mining and Knowledge Discovery 36 (2022), 379–413 [170].
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5.1 Introduction
The clinical accepted standard for monitoring glycemic control for patients with diabetes
type 2 is to measure the blood level of glycated haemoglobin (HbA1c) [208]. However, the
use of HbA1c has important limitations. For instance, its assessment does not contribute
to reduction of hypoglycemic episodes and it does not reflect blood glucose fluctuations
well [38, 108].

An alternative way of assessing blood glucose fluctuations is by taking measurements with
the FreeStyle Libre sensor, an intermittently continuous glucose monitoring (iCGM) sen-
sor. It is hypothesized that monitoring blood glucose values using an iCGM device may be-
come the new way to monitor glycemic treatment for patients with diabetes type 2 [38, 46].
Consequently, the following question arises: How can iCGM-derived parameters support
establishing individualized glycemic treatment?

In this chapter, we use the framework of Exceptional Model Mining (EMM) [54, 121] to
further explore the use of iCGM-derived parameters to establish individualized glycemic
treatment. In particular, we deploy the method proposed in Section 4.4 ([170]) and aim to
discover subgroups of patients with exceptional blood glucose fluctuations.

We do this by discretizing continuous measurements into five blood glucose levels: below
range 2 (BR2), below range 1 (BR1), in range (IR), above range 1 (AR1), and above range
2 (AR2), where range refers to desired blood glucose values. We then analyze transition
patterns between these levels in two ways: 1) we analyze the full sequences and 2) we
calculate the percentage per day that a patient has blood glucose values that are in range,
below range, or above range.

We discover a variety of subgroups with exceptional Markov chain transition behavior,
and a variety of of blood glucose fluctuations patterns. That is, some subgroups transition
towards higher blood glucose values; others towards similar or lower values. For instance,
patients with a high HbA1c value are more likely to have a Time Above Range (TAR) that is
too high. If those patients are also older than average, they are additionally less likely to
have a good Time In Range (TIR). In contrast, patients with a low HbA1c value are likely to
transition away from high blood glucose levels.

Domain experts confirm that our findings are clinically relevant and practically useful;
they contribute to further establishing individualized glycemic treatment.

5.2 Background
We assume a dataset Ω with n independently but not identically distributed sequences
of discrete random variables X t : t ∈ {1,2, ...,T }. The data realization at time t is denoted
with xt . Although sequence r ∈Ω has length Tr , without loss of generality, we assume one
fixed length T for every sequence. We refer to N as the data size and write M to denote
the total number of observations, where M =∑

r∈ΩTr = N T (note that the total number of
transitions is M −N ). The set of possible discrete values is V = {v1, v2, ..., vS } for all xt .

We further assume the availability of an extra set of attributes with information about the
sequences. We call these attributes descriptors. The full form of sequence r then becomes
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(x1, x2, ..., xTr , a1, a2, ..., am) for all r ∈ Ω. Here, integer m simply denotes the number of
descriptive attributes.

Compared to the generic terminology for EMM (introduced in Section 2.3), here we de-
fine a subgroup such that a sequence (e.g., of iCGM measurements) is either covered by
a description or not. We do not allow for a sequence to be split into pieces and to be
partly assigned to a subgroup. The reason is that we want to find to which patients the
exceptional sequences belong; this could assist doctors in adopting appropriate policies.
An interpretable description of patients could assist doctors in selecting the most useful
treatment; descriptions that only partly include certain patients are less helpful.

5.3 Continuous blood glucose sequences
We analyze data from the second DIAbetes and LifEstyle Cohort Twente (DIALECT-2) [46,
67]. DIALECT-2 is an observational study of adult persons with diabetes type 2, where
blood glucose is measured every 15 minutes for a period of 14 days. In general, blood
glucose values are considered to be in the desired range (IR) if they are between 3.9 and
10.0 mmol/L. [38] furthermore distinguish blood glucose values that are below (BR) and
above range (AR). These lower and upper ranges are again subdivided into BR1 (3.0 - 3.9
mmol/L), BR2 (<3.0 mmol/L), AR1 (10.0 - 13.9 mmol/L) and AR2 (>13.9 mmol/L).

The DIALECT-2 dataset contains the information of 126 patients, with an average sequence
length of T = 1210 (SD: 158). Not all sequences have the same length because sometimes
patients forget to upload the stored data or to charge the iCGM-device. On average, 55
(SD: 38) measurements were missing, and no patient had more than 312 missing values.

Overall, the DIALECT-2 dataset has the following characteristics: N = 126, T = 1344, M ≈
170000, and V = {BR1,BR2, IR,AR1,AR2} and S = 5. As numerical descriptive attributes,
we use age, diabetes duration, body mass index, waist/hip ratio, predicted muscle mass,
systolic blood pressure, diastolic blood pressure, heart rate, alcohol intake and smoking
pack years. The binary descriptors are sex, whether or not someone uses insulin, and
if so, with what type of scheme, whether or not someone uses metformin, repaglinide or
sulphonylurea, the presence of micro vascular disease and the presence of macro vascular
disease. We use one ordinal descriptive attribute: HbA1c category. A HbA1c value ≤ 53
mmol/mol is considered low, a value from 54 to 62 mmol/mol medium and a value ≥ 63
mmol/mol high [11, 134].

5.4 Experimental setup
A quality measure quantifies the difference between behavior within the subgroup and
behavior within the entire dataset (or the subgroup’s complement) (Definition 2.2). Based
on our findings from controlled experiments in Section 4.5, in this chapter, we evaluate
subgroups’ exceptionality using ϕAIC , a quality measure based on Akaike’s Information
Criterion (AIC) [3, 4].

We apply the (extended) beam search algorithm with parameters w = 25, d = 3 and q =
20. Descriptive attributes are refined with standard strategies (cf. [54]), where we treat
numerical attributes with the dynamic discretization strategy lbca from [135] using b = 4
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bins. Here, lbca is a concatenation of Local discretization timing, Binary interval type,
Coarse granularity, and All selection method. Furthermore, we set a minimum subgroup
size of 10% and use start parameter s = 4, that is, we start with evaluating 4th order Markov
chains, compare with 3rd order chains, and so on.

It is generally known that the beam search algorithm can discover redundant subgroups.
Therefore, we implement three techniques from [201] as outlined in Section 2.3.3. We
apply Description-Based Selection (DBS) with a fixed size of 2w = 50, a Weighted Coverage
Scheme (WCS) with γ= 0.9 and Dominance-Based Pruning (DBP).

5.5 Experimental results
We pre-process the data in two ways, resulting in two result sets. In Section 5.5.1, we first
analyze the full (long) sequences of blood glucose values. Next, in Section 5.5.2, we derive
the percentage per day that patients have blood glucose values that are above, below or in
the desired range. This approach results in short sequences.

Figure 5.1: Parameter estimates of the global model (left; reproduction of Figure 4.1a for purposes of
easy comparison with the figure on the right) and the difference between the sixth best-scoring subgroup
and the global model (right). Description is HbA1c category = low ∧ alcohol intake ≤ 25 units/month.
Coverage: 24%.
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5.5.1 Long sequences of discrete blood glucose level
Our first experiment aims to discover subgroups of patients with exceptional blood glu-
cose fluctuations, as measured by the parameters of a Markov chain fitted to full sequence
of discretized blood glucose values (measurements for 14 days with sampling every 15
minutes). Initial results were presented before in Figure 4.1.

In DIALECT-2, the entire dataset is best modeled with a second-order Markov chain; we
illustrate this once more in the left subplot of Figure 5.1. Here, we see both diagonal pat-
terns and unusual fluctuations such as blood glucose values changing from IR → AR2 and
from AR1 → BR2.

The top-20 subgroups are best fitted with either a 1st or 2nd order Markov chain. The first
subgroup contains 18% of the patients with description HbA1c category = low ∧ diabetes
duration ≤ 20 years ∧ 21.3 ≤ BMI ≤ 35.7. The subgroup’s parameter estimates were al-
ready shown in Figure 4.1b. Fairly, the conditions for diabetes duration and BMI cover all
patients that are in the first three quartiles of the respective variable distributions; they
only remove a few extreme patients from the full subgroup. However, the first condition
that selects patients with a low HbA1c value is very interesting as we know that HbA1c cor-
relates with the average blood glucose concentration of the past few months and increases
the risk for comorbidities [208].

For the first subgroup, we find a strong diagonal transition pattern (i.e., people tend to
stay at the same blood glucose level) and the blood glucose values of these patients fluc-
tuate less than those in the overall patient population. This may also be the reason that
a 1st order Markov chain suffices. Furthermore, if these patients have a too high blood
glucose value (AR1 or AR2), there is a chance that they will transition towards the average
(i.e. towards AR1 and IR, respectively, see the fourth and fifth row in Figure 4.1b).

The second-best-scoring subgroup selects patients with a high HbA1c value. Figure 5.2
shows the difference in parameter estimates between subgroup 2 and subgroup 1. It is
immediately visible that these patients are more likely to transition towards higher blood

Figure 5.2: Difference between parameter estimates of second best-scoring subgroup and first best-scoring
subgroup (Figure 4.1b). Description is HbA1c category = high ∧ 30.9 ≤ fat percentage ≤ 60.3 ∧ 118.7
≤ syst.bp ≤ 158.7. Coverage: 24%.
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glucose levels than patients in subgroup 1 (see red squares for BR1 → IR and IR → AR1)
and less likely to transition to lower levels (see blue squares).

The right plot in Figure 5.1 presents the difference in parameter estimates between the
sixth subgroup and the global model, both best fitted with 2nd order Markov chains. Here,
like for subgroup 1, patients with low HbA1c values are selected. Although we see more
fluctuations than for subgroup 1, we see a similar trend where blood glucose levels are
likely to stay the same (e.g., the red squares in the first and last two rows), or transition
towards a lower blood glucose level (e.g., red for (AR1,AR1) → IR and (AR1,AR2) → AR1).

5.5.2 Short sequences of TIR, TBR, and TAR
For our second analysis, we derive the percentage per day that a patient has blood glucose
values at level BR2, BR1, IR, AR1, or AR2. This is referred to as the Time In Range (TIR), Time
Below Range (TBR), and Time Above Range (TAR) [11, 38, 46]. For each of these values, we
compare the percentages with the guidelines (see Table 5.1) [38]. Subsequently, for each
day, we assign one out of 8 state-values (see Table 5.2). This gives us one sequence of
length T = 14 per patient.

The entire dataset is best modeled with a 1st order Markov chain, because the sequences
are relatively short and the dataset size is relatively small. In general, patients stay in or
move towards state AC (low TIR, good TBR, high TAR) or state AH (good TIR, good TBR,
good TAR) (top left plot in Figure 5.3).

The amount of available data for the subgroups is even smaller than for the entire dataset,
and it is therefore not possible to find subgroups with higher order Markov chains. The
first subgroup contains 24% of the patients with description 18.2 ≤ fat percentage ≤ 42.2 ∧
34.6 kg ≤ predicted mean mass ≤ 65.5 kg ∧ HbA1c category = high. These patients are likely
to transition to state AA, AC and AG (see top right plot in Figure 5.3, red columns), which
corresponds to the situation where TAR is too high.

Table 5.1: Conversion of time spent in glu-
cose level ranges into states suitable for Markov
chains. Time In Range (TIR), Time Below
Range (TBR) and Time Above Range (TAR) are
calculated based on whether glucose values are
IR, BR1, BR2, AR1 or AR2. Medically inspired
cut-off percentages are taken from [38].

TIR IR < 70% IR ≥ 70%
low good

TBR BR1 < 4% BR1 ≥ 4%
BR2 < 1% good high
BR2 ≥ 1% high high

TAR AR1 < 25% AR1 ≥ 25%
AR2 < 5% good high
AR2 ≥ 5% high high

Table 5.2: Conversion of time spent in glu-
cose level ranges into states suitable for Markov
chains. Eight state-values are created based on
the combination of the TIR, TBR and TAR (cf.
Table 5.1).

State TIR TBR TAR

AA low high high
AB low high good
AC low good high
AD low good good
AE good high high
AF good high good
AG good good high
AH good good good
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The third best-scoring subgroups covers patients with, among others, HbA1c = low (bot-
tom left plot in Figure 5.3). Here, we see transitions AC → AG (TIR is good instead of low)
and AE → AF (TAR is good instead of high).

The fourteenth best-scoring subgroup covers patients with a high HbA1c value, who are
additionally older than the average patient. These patients not only have a TAR that is too
high, but they are also less likely to have a TIR that is good. We see this in the bottom right
plot in Figure 5.3 by the blue columns, and by the two red columns for state AA and state
AC. Clinicians and domain experts confirm these findings. It is generally accepted that the
blood glucose values of older patients are a bit higher since their risk for comorbidities is
lower and their life expectancy shorter.

Figure 5.3: Parameter estimates of the global model (top left) and the difference between three subgroups
and the global model. Top right: First best-scoring subgroup with description HbA1c category = high ∧
18.2 ≤ fat percentage ≤ 42.2 ∧ 34.6 kg ≤ predicted mean mass ≤ 65.5 kg. Coverage: 24%. Bottom left:
Third best-scoring subgroup with description HbA1c category = low ∧ alcohol intake ≤ 18 units/month.
Coverage: 22%. Bottom right: Fourteenth best-scoring subgroup with description HbA1c category =
high ∧ 67 ≤ age ≤ 84 ∧ 0.9 ≤ waist/hip ratio ≤ 1.2. Coverage: 21%.
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5.6 Conclusion
In this chapter, we demonstrate the practical and medical relevance of the patterns dis-
covered using the approach proposed in Section 4.4. In this chapter, we used real-world
data from an observational study of adult persons with diabetes type 2.

In the first experiment, a 2nd order Markov chain is fitted to the entire dataset. We discover
subgroups of either a 1st or 2nd order Markov chain. For instance, we find a first subgroup
that covers patients with low HbA1c values, a measure known to correlate with average
blood glucose values. The subgroup is best modeled with a 1st order Markov chain and
its parameter estimates show an increased probability of staying in or moving towards
desired blood glucose values. Clinicians and domain experts confirmed that the blood
glucose values of these type of patients fluctuate less.

In the second experiment, we find, among others, subgroups covering patients with high
HbA1c values and an above average age. The model parameters indicate an increased
probability of transitioning to blood glucose values that are too high. Clinicians and do-
main experts confirmed these findings, and furthermore add that it is generally accepted
that the blood glucose values of older patients are a bit higher since their risk for comor-
bidities is lower and their life-expectancy shorter.
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Exceptional Model Mining for
Repeated Cross-Sectional Data

Repeated Cross-Sectional (RCS) data measures a phenomenon by repeatedly sampling new
individuals from a population at successive measurement moments. It allows for analyzing
societal trends without the need to follow individuals. To gain a deeper understanding of
these trends, we propose EMM-RCS, an Exceptional Model Mining instance designed to find
subgroups displaying exceptional trend behavior in RCS data. We build quality measures
on the standard error, finding various types of exceptionalities within trends (exceptional
flattening, slope, deviation from the norm). Additionally, EMM-RCS can handle practi-
cal RCS data problems, including uneven spacing of measurements over time, fluctuating
sample sizes, and missing data. We explore the performance of two refinement strategies for
incomplete descriptors and demonstrate the performance of our quality measure using syn-
thetic data experiments and two public datasets. Our findings demonstrate the versatility
of our generic quality measure.

The contents of this chapter have previously appeared in Schouten, R. M., Duivesteijn,
W., and Pechenizkiy, M. Exceptional Model Mining for Repeated Cross-Sectional Data
(EMM-RCS). In Proc. SDM (2022), pp. 585–593 [171]. We also incorporated most informa-
tion covered by its supplementary material [172].
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6.1 Introduction
A deeper understanding of societal trends helps policy makers, government institutions
and decision makers to take the right course of action. For instance, consider the trend
in the percentage of Dutch adolescents that consumed alcohol in the last 4 weeks, which
has decreased from 57% in 2003 to 26% in 2015 and has flattened since then [161, 192].
Since adolescent alcohol consumption has short-term risks (e.g., injuries, violence) and
long-term risk of adult alcohol dependence [40], the Dutch government formulated a new
goal that by 2040, the percentage of Dutch adolescents that consumed alcohol in the last
4 weeks must have further decreased to 15% [199]. Policy makers are now developing
campaigns specifically targeted at the right group of adolescents.

For developing such strategies, it is valuable to gain a deeper understanding of the in-
terplay between various socio-demographic factors such as gender, school level, family
situation, and ethnicity [40, 99]. In particular, we want to know the trends in alcohol use
in certain subgroups of the population, and where and when those trends are deviating
from the general, population trend. In this chapter, we develop EMM-RCS: a new instance
of the framework of Exceptional Model Mining (EMM) [54, 121] that seeks subgroups with
exceptional societal trends in Repeated Cross-Sectional data.

An introduction to EMM was given in Section 2.3: EMM is the data mining method that is
tailored best towards the task of analyzing societal trends: on the one hand, the evaluation
within its search strategy allows to find a variety of trend deviations; on the other hand,
exploring the search space of subgroups that can be concisely described ensures that the
results are interpretable for domain experts, making the translation of data mining results
to policy decisions relatively straightforward.

A trend analysis is done by collecting data with a Repeated Cross-Sectional (RCS) research
design, also called a trend design [25]. RCS data is obtained by sampling new individu-
als from a population at successive occasions. It differs from time series where multiple
measurements are taken per individual with very short time interval. It also differs from
longitudinal data where the same people are followed through time (see Figure 6.1). In-

time series

longitudinal

RCS

CS

Figure 6.1: Schematic overview of various types of data. In time series, multiple measurements are
sampled per individual with very short time intervals. In longitudinal data, sampling is done with long
intervals in a relatively long period of time. Repeated cross-sectional (RCS) data is collected from new
individuals at each measurement occasion, resulting in varying sample sizes.
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stead, RCS research collects the same information from different individuals and therefore
allows for the analysis of change over time without the need to follow people. This can be
useful in case of dropout risk, or when following participants is not possible (e.g., adoles-
cents grow older).

We cannot directly apply existing instances of EMM to RCS data for a few reasons. Fore-
most, no model class and quality measure exist that are suitable for analyzing trends.
There is some work on EMM for sequential data [131, 138] but as in time series or lon-
gitudinal data, there the sequence is known per individual and the sample size is fixed.
Instead, in RCS data, an individual contributes to the trend at just one measurement oc-
casion. Consequently, the entire trend is estimated on data with varying sample sizes; an
EMM model class and quality measure would have to be able to handle such fluctuations.

In addition, RCS research often has a long-term focus where the interest is in estimat-
ing trends for years or decades. Thus, the distribution of descriptive attributes is likely
to change over time as well. For instance, the proportion of Dutch adolescents joining
secondary school at a high level has increased [30]. On the one hand, EMM should al-
low for the forming of subgroups even if there is a strong imbalance in the distribution
of descriptors, but on the other hand, EMM should also account for the resulting trend
estimate uncertainty.

We propose a generic, flexible quality measure that uses the standard error of the trend
estimate to account for both fluctuating sample sizes, varying descriptor distributions
and uncertainty of trend estimates. By using the standard error we additionally direct
the search away from small subgroups. Our quality measure can be used for any trend
estimate for which a standard error exists (or can be calculated using bootstrapping).

Moreover, the generality of our quality measure allows to define multiple types of trend
deviations as exceptional behavior. This is important from a domain perspective. For
instance, when analyzing alcohol usage trends, domain experts are interested in finding
subgroups of adolescents who drink more, who have a stronger or weaker decrease, and
who have many flat parts in the trend. These different types of deviation may provide
different kinds of information, such as to whom the campaign should be targeted, how to
design the campaign, and who is likely not to be influenced.

In sum, our main contributions are:

1. an EMM model class for RCS data, including a way to handle missing data in de-
scriptive space and irregular measurement occasions in target space,

2. a generic quality measure that can be adapted for finding various exceptionalities
in trends,

3. the use of standard error to handle fluctuating sample sizes, varying descriptor dis-
tributions, and uncertainty of trend estimates, while concurrently directing the search
away from small subgroups.
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6.2 Related work
A Repeated Cross-Sectional (RCS) research design is used in many studies, such as the Eu-
ropean School Survey Project on Alcohol and Other Drugs [137], British Social Attitudes
(cf. https://bsa.natcen.ac.uk/), and Monitoring the Future [94]. In the respective do-
mains, the interplay between socio-demographic factors is investigated using global anal-
ysis techniques. For instance, regarding alcohol use among Dutch adolescents, several,
separate logistic regression models are employed to test for significant interaction effects
between survey year as dummy variable and each of the socio-demographic factors [40].
Such global analysis methods do not allow to explore more than a few socio-demographic
factors or to find non-linear effects. Also, variables have to be categorized beforehand and
individuals are nested into distinct groups.

Instead, we use the framework of Exceptional Model Mining (EMM) [54, 121] to search
for subgroups with exceptional trends. EMM poses no restrictions on the number of de-
scriptive attributes and the type of interaction between those attributes. To the best of
our knowledge, we are the first to analyze RCS data using local pattern mining. The vast
majority of data mining (and hence also EMM) methods are developed for observational
data that is available but not specifically collected with a certain research design, maybe
except for a few directions such as uplift modeling that uses experimental data [163] and
an EMM model class for A/B tests [52].

Remark that EMM model classes exist for sequential data [131, 170]. Similarly, methods
exist to detect time series anomalies or discords [126]. However, in both sequential and
time series data the repeated measurements are taken within individuals (cf. Figure 6.1),
which requires different methods than analyzing change over time in RCS data (where
individuals only contribute to the trend at one measurement occasion).

We propose a generic quality measure that builds on the standard error of the trend es-
timate. The standard error has been proposed before in an interestingness measure for
subgroup discovery (SD) [80] with a numerical target [122], where it is called a t-score since
it evaluates the mean estimate of a target variable. We use the concept of standard error
more flexibly by calculating a z-score of any user-defined trend estimate and using it to
evaluate an entire trend instead of just one estimate or target attribute. The reader should
not confuse our notion of a z-score with what [150] propose as a variant of the t-score
and call z-score; they combine the standard deviation of the target attribute in the entire
dataset with the size of the subgroup, this is not the same as standard error.

6.3 Preliminaries
Repeated Cross-Sectional (RCS) data originate from a quantitative research design where
measurements are taken at several occasions, each from a new sample of individuals [25].
One can see an RCS dataset Ψ as a bag of datasets Ωxt where each dataset is collected at
measurement occasion xt ∈T = {x1, . . . , xt , . . . , xT }. For instance, the Health Behaviour in
School-aged Children study (HBSC) [192] collects data with 4-year intervals. Later in this
dissertation, we use HBSC data from 2005 to 2017; hence, T = {05,09,13,17}. In RCS data,
the time interval between xt and xt+1 can be both regular and irregular.

https://bsa.natcen.ac.uk/
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Our goal is to analyze the change over time of a population parameter µ. Conform statis-
tical theory, for a random variable (RV) Y , each sampled value y i in the dataset represents
one of the values Y 1,Y 2, ...,Y N in the population. An estimator uses the sampled values
to estimate the parameter. For instance, Y can be used as a point estimator of the mean
of a population and y is its point estimate [22].

An estimator performs well if it produces unbiased and precise estimates and its perfor-
mance depends largely on the sampling design [22]. In this chapter, we only use unbiased
estimators. The variance of an estimator is an indicator of the amount of variation in the
possible outcomes of the estimator. We will use estimators that estimate this variance us-
ing the sampled values. Regarding the sampling design, we will assume that every individ-
ual i has the same probability of being included in the sample with inclusion probability
πi = nxt/Nxt where nxt is the sample size and Nxt the population size at occasion xt ∈ T .
Our method can be extended to other sampling designs.

Exceptional Model Mining (EMM) [54, 121] seeks subgroups in a dataset that somehow
behave exceptionally. In the context of societal trends, we aim to utilize the EMM frame-
work to discover subgroups in society with exceptionally deviating trends. EMM generally
deploys a rule-based description language using conjunctions of attribute-value condi-
tions; by applying this technique to socio-demographic information, EMM could be used
to form interpretable subgroups such as 11 ≤ age ≤ 15 ∧ school year = 4 ∧ lives with both
parents = yes.

Notation and definitions for EMM were introduced in Section 2.3. However, the traditional
EMM terminology is not directly applicable to RCS data. After all, in RCS data, individuals
are nested in measurement occasions and we need to take into account that the observa-
tions reside at a lower hierarchical level than the target model. The next section explains
our proposed solution.

6.4 Our proposed approach: EMM-RCS
First, we define our notion of data as follows:

Definition 6.1 (RCS data). An RCS dataset Ψ = (Ωx1 , . . . ,Ωxt , . . . ,ΩxT ) is an ordered bag of
T datasets, where each Ωxt is collected at measurement occasion xt for xt ∈ T . Every Ωxt

is a bag of records rxt ∈Ωxt of the form rxt = (a1, . . . , ak ,ℓ1, . . . ,ℓm). The dataset size is nΨ =∑T
t=1 nxt .

The main difference between the general framework of EMM (Section 2.3) and EMM-RCS
is the simple addition of a time indicator xt for record r and dataset Ω. However, the
important consequence is that record r i

xt
is only measured at occasion xt and its values

are not known for other measurement occasions. Consequently, the sample sizes differ
per occasion; nxt ̸= nxt ′ (t ̸= t ′). In the rest of this chapter, where possible, we use the word
individual instead of record.

Definition 6.1 assumes that attribute a j exists for all xt ∈T . In practice, not all RVs will be
sampled at every occasion. We use k and m to denote the number of unique descriptive
and target attributes in the entire RCS dataset Ψ; any attribute a j may be absent at any
occasion xt ∈T .
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6.4.1 Descriptive space

A subgroup is defined as the bag of records that a description covers. A description D cov-
ers an individual r i

xt
if and only if D(ai

1, ai
2, . . . , ai

k ) = 1 (cf. Definition 2.1). Specifically in
RCS data, a description D collects individuals from all measurement occasions, which al-
lows to estimate the trend in the subgroup. Henceforth, we distinguish the entire dataset
from a subgroup by superscripts Ψ and SG . Then, the subgroup size is nSG and its cover-
age nSG/nΨ.

A complication is that the distribution of attribute a j may vary over time. For instance,
in the Netherlands, the number of adolescents with a non-native background fluctuates
[30]. A condition on ethnic group may therefore result in a very small sample for a particu-
lar measurement occasion. Furthermore, value a j may not be available for individual r i

xt
;

whether or not individual r i
xt

is covered by a description is undefined. Values may be miss-
ing because attributes were removed from or added to the data collection, or because an
attribute may not be applicable to certain respondents. The former type results in missing
values for all i ∈ nxt individuals r i

xt
at occasion xt . The second type makes that value a j

could be missing for a specific individual r i
xt

, but be observed for another individual r i ′
xt

at
the same occasion xt (i ̸= i ′).

We decide for two things. On the one hand, we allow for subgroup SG to have a differ-
ent number of observed occasions than the entire dataset, up to a user-defined minimum
constraint cocc. We then say that T SG/TΨ ≥ cocc, which allows to form subgroups on de-
scriptive attributes that are sampled at many but not all occasions.

On the other hand, we define a new refinement condition for incomplete attributes. The
canonical EMM description language uses conjunctions of conditions on single attributes.
During the search, a refinement operator ηbuilds a new set of descriptions by looping over
all descriptive attributes and adding conditions to existing descriptions (cf. [54, Section
4.1]). We add a condition where the attribute-value pair is missing.

Definition 6.2 (Refining incomplete attribute). For an incomplete descriptive attribute a j ,
construct a response indicator Ra j ∈ {0,1} with Ra j = 1 if a value is observed and Ra j = 0 if a
value is missing. Then add D ∩ (Ra j = 0) to the set of descriptions η(D).

In Section 6.7.3, we conduct two experiments to evaluate various applications of this re-
finement strategy.

For complete descriptors, refinement strategies exist for binary, numerical, and nominal
descriptive attributes [54]. In RCS data, distinguishing nominal from ordinal attributes is
practically relevant. Hence, we define a refinement strategy for ordinal attributes.

Definition 6.3 (Refining ordinal attribute). For an ordinal attribute a j , order the unique
values of a j ; this gives a list of ordered values w1, . . . , wm . Then, add {D∩(a j ≤ wh),D∩(a j >
wh)}m−1

h=1 to the set of descriptions η(D).
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6.4.2 Quality measure
We analyze trends as a model class and aim to find subgroups with exceptional deviations
in that trend. For each description D in description language D, a quality measure quanti-
fies the exceptionality of the trend in the subgroup covered by that description. The top-q
EMM task is to find the q best-scoring subgroups for that quality measure.

We propose the following quality measure for finding subgroups with exceptional trends:

ϕRC S (D) = f
({

zxt

∣∣ xt ∈T
})

(6.1)

zxt =
∣∣θSG

xt
−θ0

xt

∣∣
se

(
θSG

xt

) . (6.2)

Our quality measure ϕRC S consist of an inner part that measures exceptionality per oc-
casion, and an outer part that summarizes the T values into one overall quality value.
Hence, in Equation (6.1) we have f : R1×T 7→ R1×1; examples are the maximum, average,
or sum. We discuss choices for f and their implications in Section 6.5.2 and now focus on
Equation (6.2).

In Equation (6.2), θSG
xt

is the value of a statistic calculated in the subgroup, se(θSG
xt

) is its
standard error, and θ0

xt
is a reference value. The reader may recognize this as a z-score

or standard score, and we indeed intend to measure the number of standard deviations
that θSG

xt
deviates from the reference value θ0

xt
. Here, we have the flexibility to decide

whether we want to find subgroups whose trends deviate from the global trend in the
entire dataset, from the trend in the complement of the subgroup, or from a fixed value
such as 0.

Also, we can choose a statistic for θxt . For instance, to directly evaluate the trend values,
we can set θxt = µxt , where µxt can be any population parameter (e.g., mean, prevalence,
ratio). Value µxt can thus be estimated using one or more RVs. Instead of directly compar-
ing the trend values, we could also assess exceptional increases or decreases in a trend, or
find subgroups for which the trend is stable (cf. Section 6.5.1).

We incorporate the sample size of the data at occasion xt by setting the denominator as the
standard error of the value estimated in the subgroup. The standard error depends on the
sampling distribution of the estimator and on the sample size. The larger the sample size,
the smaller the standard error and hence the larger the standard score zxt . Standard error
correction will direct the search process away from tiny subgroups. In case the distance
to reference value θ0 is similar at two occasions, but the sample size at xt is larger than at
xt ′ (t ̸= t ′), more weight will be on the distance at occasion xt (since we are more certain
about that distance). Hence, the search can use descriptive attributes whose distributions
change over time, but corrects for imbalance over time by giving more weight to estimates
calculated from more data.

6.4.3 Search strategy
We choose to employ beam search [54, Algorithm 1] as the algorithm of our choice. Es-
sentially, beam search performs a level-wise search of d levels: on each level, promising
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descriptions are further refined. Candidate subgroups are evaluated using ϕRC S and w
promising subgroups are taken to the next level for further refinement. The top-q sub-
groups are returned (see 2.3.2 for more on beam search).

EMM-RCS requires the computation of T estimates and T standard errors which is un-
likely to be more complex than O (T n) for most statistical quantities (n being the number
of individuals). The computational complexity of the entire beam search algorithm then
becomes O (d w Z E(c +O (T n)+ log(w q)), where we replaced the cost of learning a model
M from n records on m targets, M(n,m), with O (T n), and where Z and E refer to the num-
ber of descriptors and the highest cardinality (number of distinct values) of any nominal
attribute, respectively (numerical, ordinal and binary descriptors are refined faster than
nominal descriptors).

Furthermore, EMM often employs a constraint that specifies the minimum size of a sub-
group. We adapt this constraint such that it checks the sample size at occasion xt for all
xt ∈T , which we denote with csize. This minimum sample size constraint csize is generally
set to csize = 0.1. Consequently, if the subgroup has at least a cocc proportion of occasions
(as discussed in Section 6.4.1) with at least a csize proportion of individuals, the subgroup
will be evaluated. The subgroup’s data from occasions that do not meet the size constraint
are removed and not used while evaluating the subgroup’s exceptionality.

6.5 Instantiations of our quality measure
Before we apply our method to both synthetic and real-world data in Sections 6.6 and 6.7,
we will now first give examples of choices for µ, θ, and f .

6.5.1 Instantiations of µ and θ

The Dutch government aims to decrease the proportion of Dutch adolescents that con-
sumed alcohol in the past month [199]. To seek exceptional trends in alcohol use in Sec-
tion 7.5, we assume a binary-valued RV L measuring alcohol use at occasion xt , following
a binomial distribution with parameters nxt and µxt , assuming that nxt is large [22]. Then,
µxt can be approximated with the proportion of the sampled values ℓ, and corresponding
standard error,

µxt =
1

nxt

nxt∑
i=1

ℓi
xt

(6.3)

se
(
µxt

)=√
µxt

(
1−µxt

)
nxt −1

. (6.4)

While analyzing the Eurobarometer dataset (Section 6.7.2), we are interested in the Euro-
pean citizens’ perception about the speed with which the European unification advances.
There, we assume that RV L measures the speed on a scale between 1 and 7 and that it has
a normal distribution with mean µ. We set µxt as in Equation (6.3) with standard error:

se
(
µxt

)= sd
(
µxt

)
p

nxt

=
(∑nxt

i=1

(
ℓi

xt
−µxt

)2

p
nxt

(
nxt −1

) )
. (6.5)
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If we are interested in finding trends with an exceptional increase or decrease at some
measurement occasions, we can decide to set θxt as the difference, or slope, between the
estimates of two successive occasions. Of course, this would only work if the data for
successive occasions exist. For the estimate of Equation (6.3) the slope and its standard
error are

θxt =µxt+1 −µxt ∀t ∈ {1,2, . . . ,T −1} (6.6)

se
(
θxt

)=√
se

(
µxt+1

)2 + se
(
µxt

)2. (6.7)

Sometimes, a trend may fluctuate a little between successive measurement occasions,
while the human eye can distinguish a clear general pattern. Then, directly comparing
the slope in the subgroup with the slope in the entire dataset may result in finding false
subgroups that are considered exceptional because of sampling fluctuations. Hence, one
may want to first calculate a weighted moving average τxt with a window u,

τxt =
∑u

t=1 w∗
xt
µxt∑u

t=1 w∗
xt

=
u∑

t=1
wxtµxt , (6.8)

where wxt = w∗
xt/

∑u
t=1 w∗

xt
. If we weight our moving average by the respective sample sizes

and choose a window of u = 2. Then, wxt = nxt/
(
nxt +nxt+1

)
for all t ∈ {1, . . . ,T − 1}. The

standard error of this statistic is:

se
(
τxt

)=√
u∑

t=1
w2

xt
se

(
µxt

)2. (6.9)

As a second step, we can then define θxt and its standard error as in Equations (6.6) and
(6.7), with µxt replaced by τxt . While calculating the weighted moving average with a win-
dow of 2, we lose one measurement occasion; another one is lost while calculating the
slope. Hence, the number of values entered into Equation (6.1) is T −2.

6.5.2 Instantiations of f

The function f aggregates T standardized values into one subgroup quality value. When
choosing the right function f , we must keep in mind the ordering of the subgroups in the
top-q search. Subgroups with a larger quality value are ranked higher, and we consider zxt

to be larger for more exceptional subgroups. Hence, the maximum, average, or sum are
appropriate choices for f , but the minimum is not.

The maximum is simply fmax = maxzxt
zxt for all xt ∈ T . If we set the reference θ0

xt
=

θΨxt
as the general trend in the dataset, fmax selects subgroups that deviate at least once

from the general trend. Instead, one could also take the average over the T standardized
scores; favg = 1

T

∑T
t=1 zxt . As can be seen in Section 6.7.2, such a summary function selects

exceptional subgroups with smooth trends while fmax results in fluctuating trends. Of
course, fsum prefers subgroups for which more measurement occasions are available.

As we will see in Section 7.5, the general trend in alcohol use is predominantly decreasing.
We could be interested in finding subgroups of adolescents whose alcohol usage trends
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have horizontal parts: for those adolescents, government campaigns may fall flat. We can
find such subgroups by setting θ0

xt
= 0. However, without any further adaptation, due to

the ordering of subgroups in the top-q search, these settings will result in subgroups with
slopes that deviate from 0, instead of being close to it. Reversing the ordering won’t help,
since this directs the search towards smaller subgroups: zxt in Equation (6.2) decreases if
se(θSG

xt
) increases.

We experiment with two solutions. First, we do not correct for varying sample sizes by
setting se(θSG

xt
) = 1 and let fcount(ϵ) = |zxt < ϵ| count the number of scores within a thresh-

old ϵ. The higher the count, the more exceptional the subgroup. Second, we do estimate
the standard error of the slope, but instead of dividing by the standard error, we multiply
the distance by the standard error. Again, we use fcount(ϵ), although it requires a bit more
time to specify the right parameter for ϵ. In combination with such a multiplication, one
could also use fsum, favg, or fmin and reverse the ordering in the top-q search. However,
this would select subgroups with a trend that is in its entirety close to 0 (for fsum and favg)
or subgroups with a trend that has just a single slope that is close to 0 ( fmin). Based on
these preliminaries experiments, our final solution includes setting se(θSG

xt
) = 1, then an

fcount(ϵ) and then an fsum; we thus combine two aggregation functions.

6.6 Experiments on synthetic data
To show the performance of quality measure ϕRC S , we perform a synthetic data exper-
iment as follows. First, we draw trend values from a normal distribution N (10,1) for
N = 10000 individuals and randomly assign individuals to one out of T = 10 measure-
ment occasions. Second, we draw ncov s = 10 binary descriptors, each from a binomial
distribution a j ∼ Bin

(
n = N , p = 0.5

)
. Third, we generate a ground truth subgroup with

a description based on nli t s ∈ {2,3,4} literals, which are randomly chosen from the 10
binary descriptors (e.g., a4 = 1∧a7 = 1).

Because of the way the descriptors are generated, a description with 2, 3 or 4 literals will
approximately cover 25%, 12.5% and 6.25% of the individuals. For these individuals, the
trend value will be replaced by a new trend value, which is drawn from a normal distri-
bution N

(
10+di st , sd 2

)
where the distance varies with di st ∈ {1,2,3} and the standard

deviation varies with sd ∈ {1,2,3}. The idea is that the standard deviation influences the
standard error of the trend estimate. Altogether, these simulation parameters allow us to
analyze how the quality value is influenced by varying distance, uncertainty of the trend
estimate and size of the subgroup.

Specifically, we perform EMM-RCS with ϕRC S with Equations (6.3) and (6.5), θ0 = θΨ and
fmax. We search the space of candidate subgroups using beam search with parameters
q = 20, d = 5, and w = 20. We apply Description-Based Selection (DBS), a Weighted Cover-
age Scheme (WCS) and Dominance-Based Pruning (DBP) (see Section 2.3.3). Every com-
bination of simulation conditions is repeated nr eps = 100 times.1

Figure 6.2 shows boxplots of the quality values of the ground truth subgroups that can
be found in the top-20 results list. The smaller the subgroup, the larger the quality value

1Experimental code available at https://github.com/RianneSchouten/EMM_RCS/.

https://github.com/RianneSchouten/EMM_RCS/
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(compare the dark boxplots for nli t s = 2 with the lighter boxplots for nli t s = 3 and 4).
Furthermore, the smaller the uncertainty of the trend estimate, the larger the quality value
(compare the green boxplots for sd = 1 with the orange and purple boxplots for sd = 2 and
3). Finally, the larger the distance between the subgroup and global trends, the larger the
quality value (compare the two panels).

Figure 6.2 furthermore displays the trade off between the distance, the uncertainty of the
trend estimate and the subgroup size in determining the exceptionality of a subgroup.
Recall that the larger the quality value, the more exceptional the subgroup. Subgroups
with a trend line at di st = 1 with sd = 1 and nli t s = 2 (dark green boxplot at the top)
have the same quality value as subgroups with di st = 3, sd = 3 and nli t s = 2 (dark purple
boxplot in bottom panel, see vertical line). Indeed, although the latter are further away
from the global trend, the uncertainty is larger. Therefore, their exceptionality cannot be
distinguished from subgroups with a trend that is closer but have smaller uncertainty.

Table 6.1 presents additional results. Out of 100 repetitions per combination of simulation
conditions, it presents the fraction of ground truth subgroups that is found in the top-20
result list, and the median rank and quality value of the found subgroups. We see that
the fraction of found subgroups drops below 1.0 if subgroups are fairly small (nli t s = 4).
Given the way the descriptive attributes are generated, a ground truth subgroup with 4
literals will contain about 6.25% of the individuals. In some repetitions, that percentage
may have dropped below the minimum size threshold csi ze = 0.05 and the ground truth
subgroup cannot be found.
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Figure 6.2: Boxplots of the quality values of the ground truth subgroup for 100 repetitions. Top and
bottom panel mark the distance between the subgroup and the non-subgroup, sd ∈ {1,2,3} specifies the
standard deviation of the trend in the subgroup and nli t s ∈ {2,3,4} is the number of literals in the
description, which directly influences the size of the ground truth subgroup (25%, 12.5% and 6.25%).
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At the same time, it is not always possible to find a larger subgroup. Consider the fraction
of found subgroups of 0.06 for di st = 1, sd = 3 and nli t s = 2. Here, we remind the reader
that ϕRC S compares the subgroup trend estimate θSG with the global trend estimate θ0 =
θΨ. The latter is an average over both subgroup and non-subgroup individuals in the
dataset. The observed distance between θSG and θΨ will therefore be smaller than the
di st intended, depending on the size of the subgroup and the standard deviation in the
subgroup. For instance, if the trend values of the subgroup and non-subgroup individuals
are both drawn from the same normal distribution and if di st = 1, for a subgroup with
25%, 12.5% or 6.25% coverage, the observed distance between θSG and θΨ will be 0.75,
0.875 and 0.9375 respectively. This effect increases if the standard deviation is larger in
either the subgroup or non-subgroup. Therefore, under some simulation conditions, it
can be challenging to discover a larger subgroup.

Table 6.1: Fraction of ground truth subgroups that are found in top-20 result list, and the median
rank and median quality value of the found subgroups. The subgroup trend has a distance from the
non-subgroup trend with di st ∈ {1,2,3}, a standard deviation sd ∈ {1,2,3} and a ground truth description
of nli t s ∈ {2,3,4} literals. The nli t s directly influences the subgroup size (25%, 12.5% and 6.25%).
Simulation is run with 100 repetitions.

dist sd nlits frac.found med.rank med.quality

1

1
2 1.0 1 13.5
3 1.0 1 11.4
4 0.56 1 9.4

2
2 1.0 2 7.1
3 1.0 1 6.4
4 0.67 1 5.4

3
2 0.07 10 6.0
3 0.92 5.5 4.8
4 0.47 3 4.2

2

1
1 1.0 1 26.0
3 1.0 1 22.1
4 0.52 1 17.6

2
2 1.0 1 13.4
3 1.0 1 11.5
4 0.64 1 9.4

3
2 0.81 5 9.4
3 1 1 8.1
4 0.56 1 6.8

3

1
2 1.0 1 38.9
3 1.0 1 33.0
4 0.66 1 26.8

2
2 1.0 2 19.8
3 1.0 1 17.0
4 0.58 1 13.6

3
2 0.99 4 13.3
3 0.94 1 11.7
4 0.63 1 9.4
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6.7 Experiments on public, real-world data
In this section, we evaluate our quality measure ϕRC S on two real-world datasets, using
various combinations of θ and f . We furthermore investigate the effect of new refinement
operators for incomplete descriptors in Section 6.7.3.

6.7.1 The Brexit dataset
A 10-wave survey examines Attitudes Towards Brexit (ATB) in the aftermath of the 2016
Brexit referendum on European Union (EU) membership [82]. The survey was conducted
between April 25, 2017 and January 10, 2020. The goal of the ATB survey is to examine
social identities that are formed during the referendum. Combining the ATB survey with
panel datasets, we know that Brexit identities are prevalent, felt to be personally important
and cut across traditional party lines [82].

Here, we construct a trend of the proportion of respondents that identify themselves as
leaver (as opposite to remainer or neither a leaver nor a remainer). We drop 1 descriptive
attribute because it misses ≥ 50% of values. From the resulting 15 descriptors, 6 contain
missing values, 1 is binary, 2 are numerical, 6 nominal, and 6 ordinal. The dataset contains
16 965 individuals.
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Figure 6.3: Trends of a selection of discovered subgroups in the Brexit
dataset, and the overall population (black). Subgroup descriptions are
given in Table 6.2.

Table 6.2: Coverage and description of a selection of discovered subgroups in the Brexit dataset.
Corresponding trends are displayed in Figure 6.3.

# Cov. Description
1 0.32 govthand = {don’t know, very, fairly badly} ∧ tradeimmig ≤ 7 ∧ age ≥ 47
2 0.40 govthand = {don’t know, very, fairly badly} ∧ age ≥ 39 ∧ work status ̸= {other}
9 0.65 govthand = {don’t know, very, fairly badly} ∧ tradeimmig ≤ 7
1 0.34 hindsight = {wrong}∧ region ̸= East ∧ age ≥ 31
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In the Brexit dataset, we explore trends of the proportion of people who think of them-
selves as leavers. Results can be found in Figure 6.3. The population trend is fairly hori-
zontal, with an approximate average of 35% of respondents who want to leave the EU.

The dashed line is the best-scoring subgroup when we directly compare the proportion in
the subgroup with the population trend. Dashed subgroup 1 covers people who think in
hindsight that Britain was wrong to vote to leave the EU (cf. Table 6.2). The subgroups with
the solid trend lines are found by comparing the slopes in the subgroup with the slopes in
the population. Now, we find subgroups with an increase in the proportion of leavers at
measurement occasions 2 and 3 (first bump) and at occasions 6, 7, and 8 (second bump),
but an enormous decrease between occasions 9 and 10. The final occasion was measured
on January 10, 2020; a month earlier, on December 12, 2019, the UK General Election
delivered a landslide majority for Boris Johnson’s conservatives.

Solid subgroups 1, 2, and 9, while sharing fluctuations, appear at different intercepts. The
definitions in Table 6.2 show that all subgroups think that Britain is bad at negotiating its
future relationship with the EU (condition 1). The other conditions select different age
groups (#1, #2) or believe that Britain should prioritize free trade rather than controlling
immigration (#9). In general, while the overall population reacted to the 2019 election with
a slightly boosted leave proportion, in all the subgroups 1, 2, and 9 the leave proportion
plummeted dramatically. It is quite likely that Boris Johnson’s cavalier approach towards
all things Brexit and all matters of negotiation has a strongly polarizing effect: those people
who already thought that the British government were doing a less than ideal job in nego-
tiations are likely to no longer identify with his particular brand of leave politics, while the
overall population may be more likely to do so.

6.7.2 The Eurobarometer
The Eurobarometer is a survey organized by the European Commission (EC). Since 1974,
the Eurobarometer collects data from citizens in all European Union (EU) countries at 2
or 3 moments per year. We use the public dataset available at [167], containing data from
all measurement occasions between 1974 and 2002.

Specifically, we analyze the trend in the mean perception towards advancement of Eu-
ropean unification on a scale from 1 (standing still) to 7 (as fast as possible) The sur-
vey question is asked at 12 measurement occasions with irregular time intervals: T =
{86,87,90,92,93,94,95,96,97,99,00,01}. This is not problematic since EMM-RCS is built
to handle irregular time intervals.

Due to the large scale of the survey, there are no descriptive attributes with no missing
values. We drop all descriptive attributes with ≥ 50% missing values, because it is likely
that those attributes are surveyed in other years or that they result from follow-up ques-
tions (which are only asked depending on a respondent’s answer to another question). We
apply Definition 6.2 to the resulting 38 descriptors. Of those descriptors, 17 are binary, 1
numerical, 4 nominal, and 16 ordinal. The dataset contains 155 244 individuals.

Figures 6.4 and 6.5 display subgroups with exceptional trends obtained with summary
functions favg and fmax, respectively. Tables 6.3 and 6.4 give the subgroup descriptions.
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Figure 6.4: Trends of a selection of discovered subgroups in the Euro-
barometer dataset using favg, and the overall population (black). Sub-
group descriptions are given in Table 6.3.

Table 6.3: Coverage and description of a selection of discovered subgroups in
the Eurobarometer dataset using using favg. Corresponding trends are displayed
in Figure 6.4.

# Cov. Description
1 0.17 benefitc = {benefit} ∧ epimp1 = {fairly, very important} ∧

satisdmo = {fairly, very satisfied}
3 0.11 age ≥ 23 ∧ epimp = {not at all, not very important} ∧

satisdmo = {not very, fairly, very satisfied}
14 0.23 benefit = {not benefit}
20 0.06 nation = {Ireland}∧married ̸= {separated}

Comparing the two approaches, averaging tends to find subgroups that have a smoother
trend, while maximizing tends to find more erratic trends (except maybe for subgroup 20
in Figure 6.4). Most of the subgroups found with favg deviate from the general trend by
translation: fluctuations follow the overall trend, but there is a constant positive or nega-
tive intercept based on general group outlook. For instance, subgroup 1 covers European
citizens who think their country benefits from being a member of the EU, think the Euro-
pean Parliament (EP) is important in their life and are satisfied with the way democracy
works in their country. In contrast, subgroup 3 covers citizens who do not think the EP is
important for their life and who are not satisfied with the way democracy works in their
country. The former group of citizens is more positive about the advancement of Euro-
pean unification than the latter, which stands to reason.

These findings are important from a domain perspective: they display an interplay be-
tween socio-demographic factors that is difficult to find with confirmatory, global anal-
ysis techniques. From a DM perspective, these findings illustrate that EMM-RCS detects
trends deviating from the global trend in both upwards and downwards directions.
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Figure 6.5: Trends of a selection of discovered subgroups in the Euro-
barometer dataset using fmax, and the overall population (black). Sub-
group descriptions are given in Table 6.4.

Table 6.4: Coverage and description of a selection of discovered subgroups in the
Eurobarometer dataset using fmax. Corresponding trends are displayed in Figure 6.5.

# Cov. Description
1 0.12 epimp = {not at all, not very important} ∧ married ̸= {refused} ∧

poldisc = {occasionally, frequently}
4 0.06 nation = {Ireland}

10 0.07 nation = {Italy}
18 0.07 nation = {France}
19 0.07 nation = {Denmark}

Compared to Figure 6.4, the subgroups in Figure 6.5 deviate from the general trend at
some points (e.g., #18 in 1993 and #19 in 1992) but overlap with the general trend at other
occasions. We find subgroups that barely exceed the minimum size constraint and found
subgroups cover the citizens of specific countries. For instance, in Denmark (#19), citizens
were more positive between 1992 and 1996 than the average European citizen while in
France (#18), the perception of citizens dropped quickly between 1990 and 1992 and then
gradually increased again.

Subgroup 20 in Figure 6.4 and subgroup 4 in Figure 6.5 have similar trends and cover
mainly the same respondents; citizens in Ireland. We may expect this trend to have a
higher rank considering that it is higher on the Y-axis than a subgroup like #1. However,
subgroup 1 is larger than subgroup 20 (cf. Figure 6.3) and therefore, its standard error is
smaller and its z-scores are larger. Thus, here we see the effect of our correction for im-
precise estimates in small subgroups.

The Eurobarometer dataset has missing values for many descriptive attributes and there-
fore, a subgroup may not have any observed values at some measurement occasions. The
effect is visible in Figure 6.4 by interrupted trend lines.
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6.7.3 Handling incomplete descriptors

In RCS data, descriptive attribute a j could be missing for a specific individual r i
xt

, but ob-

served for another individual r h
xt

at the same occasion xt (h ̸= i ). Popular missing data
methods such as dropping incomplete individuals and mean/median imputation are in-
sufficient for solving this issue, for several reasons. The former may simply drop the entire
dataset. In less extreme examples, both methods suffer under all forms of missingness: for
missingness other than Missing Completely At Random (MCAR), they are known to give
biased estimates; under MCAR, they give unrealistic standard errors [128, 196], especially
when the proportion of missing values is high (which is typical for RCS data). Moreover, it
is hard to impute attribute a j at occasion xt if it is not sampled at all at that same occasion.

We therefore introduced an extra refinement operator in Definition 6.2. If the missing data
are MCAR, we expect the condition Ra j = 0 to not appear in the descriptions of the top-q
result list. After all, in case of MCAR every individual has the same, fixed probability of be-
ing incomplete and consequently, the distribution of the missing values is similar to the
distribution of the observed values. If the data are Missing At Random (MAR), informa-
tion about missing values lies in the observed data (for other attributes). We expect those
other attributes to appear in the descriptions. When the data are Missing Not At Random
(MNAR), the information about the missing values is missing from the data. Here, we ex-
pect Definition 6.2 to be helpful. For more on MCAR, MAR, and MNAR, see [162, 179, 196].

As we will see in Section 6.7, it turns out that none of the subgroups found in the real-
world data experiments selects missing values from a descriptive attribute as proposed in
Definition 6.2. To show that these findings are expected if the data is Missing Completely
At Random (MCAR) or Missing At Random (MAR), we now present the results of two ex-
periments. In the first experiment, we explore the performance of Definition 6.2; in the
second experiment we explore the performance of a conjunction of selection conditions
that also includes Definition 6.2.

Missingness in the Brexit dataset

First, we experiment with the Brexit dataset. We artificially remove values from the com-
plete dataset, specifically from variable hindsight (using techniques from [176]). Recall
that hindsight is an important attribute for describing subgroups. Table 6.5 presents the
main condition for the top-1 subgroup after applying various missingness mechanisms
and percentages. Note that about 50% of the individuals in the Brexit dataset have hind-
sight = wrong, and that a missingness percentage of 25% therefore means that we have an
observed value wrong for 25% of the individuals, a missing value for another 25% of the
individuals and an observed value right for 50% of the individuals.

When data is MCAR, individuals are randomly amputed. Consequently, the distribution of
hindsight will not change; only the number of observed values will reduce. We see in Table
6.5 that when 15% of the rows have a missing value, not enough observations remain to
reliably estimate the trend of the proportion of people who want to leave the EU. Instead,
attribute EURef16, which has a correlation with hindsight of about -0.2, will be used. With
a small missingness percentage of 5%, the search is not affected by the missing values.
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Table 6.5: Main condition in the description of the top-1 sub-
group found on the Brexit dataset; hindsight is artificially am-
puted from a given percentage of rows, for MCAR, MAR, and
MNAR missingness mechanisms.

% MCAR MAR MNAR
0.05 h.sight = wr. h.sight = wr. h.sight = wr.
0.15 EURef = rem. h.sight = wr. EURef = rem.
0.25 EURef = rem. EURef = rem. EURef = rem.
0.35 EURef = rem. EURef = rem. h.sight = missing
0.45 EURef = rem. EURef = rem. h.sight = missing

Table 6.6: Overview of four approaches for handling incomplete descriptors in EMM. Definition 6.2
is used in both the ignoreORselect and ignoreANDselect method, but in various ways. We give
an example of the selection conditions added to the set of descriptions for an incomplete, binary
descriptor a j with values v1 and v2.

Method Description Added selection conditions
cca incomplete individuals are removed

from dataset
a j = v1, a j = v2

ignore incomplete individuals are ignored
and cannot be covered

a j = v1, a j = v2

ignoreORselect incomplete individuals could form a
separate subgroup

a j = v1, a j = v2, Ra j = 0

ignoreANDselect incomplete individuals could form a
separate subgroup, or may be selected
together with complete individuals

a j = v1, a j = v2, Ra j = 0,
a j = v1 ∧Ra j = 0,
a j = v2 ∧Ra j = 0

We generate MAR data by amputing hindsight based on EURef16 values: individuals with
EURef16 = remain are more likely to have missing hindsight values than individuals with
EURef16 = leave. Hence, the missing data is MAR since the information about the missing
values is observed. Consequently, as expected, the top-1 subgroup is selected using EU-
Ref16 = remain (cf. Table 6.5). Because the two attributes do not perfectly correlate, a MAR
mechanism may ampute hindsight = right as well. It has been shown that MAR converges
to MCAR for small correlations, and to MNAR for strong correlations [179]. Accordingly,
for small missingness percentages, we find that hindsight again appears in the subgroups’
descriptions.

With MNAR, the information about the missing values is really missing from the data.
Therefore, for high missingness percentages, EMM-RCS needs to resort to Definition 6.2
to find the subgroup of non-leavers (cf. Table 6.5, right column, bottom two rows). For
medium percentages, the subgroup of missing values is too small to compete with other
subgroups: other attributes will be used for describing subgroups.

Missingness in the HBSC and DNSSSU datasets

Next, we experiment with an incomplete dataset, originating from the HBSC [192] and
DNSSSU [161] studies. More information about these studies and the deployment of
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Table 6.7: Quality and description of the best exceptional subgroup found in the HBSC and
DNSSSU datasets with ϕRC S for four missing data methods.

Method ϕRC S Description
cca 44.3 age: 12 ∧ urbanity: at least moderate ∧ skipped classes: 0
ignore 46.3 age: 12 ∧ skipped classes: 0 ∧ urbanity: at least moderate
ignoreORselect 46.3 age: 12 ∧ skipped classes: 0 ∧ urbanity: at least moderate
ignoreANDselect 41.9 age: 12 ∧ skipped classes: 0, NaN ∧ sex: girl, NaN

EMM-RCS in this context will be discussed in Section 7.1. In this chapter, we further eval-
uate the refinement strategy from Definition 6.2.

In particular, we refer to Definition 6.2 as the ‘raw’ or ignoreORselect approach (i.e., indi-
viduals with missing values are either ignored or specifically selected) and add an extra
approach which we call the ignoreANDselect approach: individuals with missing values
can be selected together with individuals with observed values. We hypothesize that the
ignoreANDselect refinement strategy could be beneficial in situations with smaller miss-
ingness proportions since observed and unobserved descriptive space can be covered si-
multaneously. See Table 6.6 for a short description and example selection conditions for
the two approaches.

We compare our ignoreORselect and ignoreANDselect methods with two traditional meth-
ods. First, we consider complete case analysis (cca), which discards incomplete individu-
als from the dataset, removing the need to make the refinement strategy handle missing
data. The second way of handling incomplete descriptors is by simply ignoring individu-
als with missing values on a particular attribute a j . These individuals cannot be covered
by the description.

Table 6.7 lists the descriptions and qualities of the top-1 subgroup for each approach. Not
surprisingly, the top description for ignore is similar as the top description for ignoreORse-
lect; we expect our data to be Missing Completely At Random (MCAR) and our missingness
percentages are small. In contrast, with ignoreANDselect, the subgroup set contains many
conditions that cover both observed and unobserved individuals, such as skipped classes:
0, NaN.

Although all descriptions generated with ignore and ignoreORselect are theoretically also
possible with ignoreANDselect, the quality of the top subgroup is lower for the latter. This
illustrates a property of beam search parameter w : if we increase the space of candidate
subgroup descriptions, at earlier search levels important precursors may be pushed out of
the beam, which could lead to reduced quality in the final result set. Increasing the beam
width w may resolve this issue; indeed, when we set w = 60 rather than w = 20, the top
subgroup with quality 41.9 drops to position 10.

For cca, differences with ignore and ignoreORselect are subtle; some subgroup descrip-
tions are slightly more general, and the order of some conditions is reversed. The reason
is a slight change in the proportions of the observed values.
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6.8 Conclusion
We propose Exceptional Model Mining for Repeated Cross-Sectional data (EMM-RCS): an
EMM instance discovering subgroups with exceptional trends in data collected with a Re-
peated Cross-Sectional (RCS) research design. We develop an expressive quality measure,
ϕRCS, that builds on the standard error of trend estimates and is easily adapted for finding
a variety of exceptionalities. EMM-RCS can handle practical RCS data problems includ-
ing uneven spacing of measurement over time, fluctuating sample sizes, and incomplete
descriptive attributes.

We evaluate the sensitivity of our quality measure through a synthetic data experiment.
Our results clearly display the trade-off between the distance, the uncertainty of the trend
estimate and the subgroup size in determining the exceptionality of a subgroup. After all,
the larger the quality value, the more exceptional the subgroup. A subgroup that contains
25% of the individuals and has a trend line at distance di st = 1 with standard deviation
sd = 1, has the same quality value as a subgroup that contains 25% of the individuals
and has distance di st = 3 and standard deviation sd = 3. Indeed, even though the latter
subgroup is further away from the global trend, the uncertainty is larger. Therefore, its
exceptionality cannot be distinguished from a subgroup with a trend that is closer but has
a smaller uncertainty.

We account for missing data in descriptive attributes by the refinement introduced in Def-
inition 6.2; in Section 6.7.3, we demonstrate its working for MCAR, MAR, and MNAR miss-
ingness. We find that with MNAR, the information about the missing values is really miss-
ing from the data and Definition 6.2 can be used to discover the true subgroup. For MCAR
and MAR, the search algorithm tends to use other descriptive attributes that correlate well
with the incomplete descriptor.

Alternatively, the ignoreANDselect approach partly solves issues with small missingness
percentages, but it is less interpretable. Furthermore, we find that this refinement strategy
increases the space of candidate subgroup descriptors in such a way that at earlier search
levels, important precursors may be pushed out of the beam. This could effectively lead
to a reduced quality in the final result set.

Future extensions to Definition 6.2 or alternative missing data methods for handling in-
complete descriptors should be explored. A possible direction for future research could lie
in adapting EMM-RCS to handle different sampling designs, including random, stratified
and cluster-based sampling. This can be achieved by including weights in the population
estimate in Equation (6.3).

Finally, perhaps the starkest illustration of the versatility of EMM-RCS and our quality
measure is provided by the results in Figure 6.3, on the Brexit dataset. When looking for
groups with an exceptional slope in the trend, we find three subgroups that each show
a drastic reduction in identification with the leave camp, when comparing measurement
occasions directly before and after the landslide victory of Boris Johnson in the 2019 UK
General Election. These subgroups share the characteristic of finding that the govern-
ment handled the negotiations badly, which explains why they are unenthusiastic of Boris
Johnson taking a firmer grip on proceedings. But crucially, these subgroups differ in their
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relation with the overall population: subgroup 2 skewed more, subgroup 1 skewed com-
parable, and subgroup 9 skewed less than average towards leave. Hence, EMM-RCS can
detect a change in signal of this kind, independent of how the subgroup behaved relative
to the overall population outside of this change itself: it can detect both the relatively crude
global signals of the dashed line and the relatively subtle local signals of the solid lines.
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Discovering Subgroups with
Exceptional Trend Behavior

Over the last two decades, alcohol use has been in decline among Dutch adolescents. How-
ever, the declining trend has been flatlining: prevalence of monthly alcohol use among
Dutch 12-to-16-year-olds decreased from 54% in 2003 to 26% in 2013, but merely to 23%
in 2019. Dutch governmental policy makers aim to decrease this prevalence further. To do
so effectively, it would benefit them to know whether social group memberships correspond
to exceptional alcohol use trends. With traditional statistical approaches, it is challenging
to analyze such a relation between societal trends and social group memberships: only a
few socio-demographic variables can be included, subgroups must be pre-defined, and lin-
earity assumptions are required. We resolve these issues and automatically identify social
subgroups of the Dutch adolescent population by deploying Exceptional Model Mining for
Repeated Cross-Sectional data (EMM-RCS) on data that interleaves two quadrennial stud-
ies: the Health Behaviour in School-Aged Children study (HBSC), and the Dutch National
School Survey on Substance Use (DNSSSU). Our findings confirm existing knowledge that
age, educational level, and migration background are important descriptors of monthly
alcohol use, and provide further insights into the existence of an interplay effect with life
satisfaction, urbanization degree, and truancy.

The contents of this chapter have previously appeared in Schouten, R. M., Stevens, G. W.,
van Dorsselaer, S. A., Duinhof, E. L., Monshouwer, K., Pechenizkiy, M., and Duivesteijn,
W. Analyzing the interplay between societal trends and socio-demographic variables with
local pattern mining: Discovering exceptional trends in adolescent alcohol use in the Nether-
lands. Accepted for presentation at BNAIC/BeNeLearn (2024) [177].
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7.1 Introduction
Analyzing societal trends is an important line of research in social sciences, as it assesses
how the behaviors, attitudes, and feelings of populations change over periods of time, and
for which groups such changes are particularly pronounced. Such insights are not only
scientifically important, but also have the potential to pinpoint directions for policies and
interventions. For instance, the European School Survey Project on Alcohol and Other
Drugs (ESPAD) collects data on substance use and other forms of risk behavior among
15- to 16-year-old students in 49 European countries [137], and Monitoring the Future fo-
cuses on drug and alcohol use among students in America [94]. Using data of the Health
Behaviour in School-Aged Children study (HBSC) [192] and the Dutch National School
Survey on Substance Use (DNSSSU) [161], we analyze trends in adolescent alcohol use
between 2003 and 2019 in the Netherlands. We aim to demonstrate the value of deploy-
ing a local pattern mining approach as a sociological method by identifying subgroups of
adolescents displaying deviating patterns of alcohol use.

Lifetime and monthly alcohol use among Dutch adolescents has changed dramatically
over the last decades: a substantial increase between 1992 and 2003 [40] was followed by
a sharp decrease between 2003 and 2015. Since 2015, both lifetime and monthly alcohol
use among Dutch adolescents has remained stable [161, 192]. The monthly prevalence of
alcohol use in 2019 still ranges from 5% among 12-year-olds to 53% among 16-year-olds
[161]. Also, there are sizable subgroup differences in alcohol use. Higher prevalence of life-
time alcohol use can be found for older adolescents versus younger adolescents, adoles-
cents with lower versus higher educational levels, adolescents without a migration back-
ground versus those with a migration background, and adolescents from families with a
relatively high versus low socioeconomic status [192].

Science is well aware that early and frequent alcohol use leads to a broad range of nega-
tive consequences [133, 186]. Policy makers, government institutions, and other decision
makers are interested in further reducing alcohol use among adolescents. To that end, it
would help to have a better understanding of factors that influence when, whether, and
why the downward trend flatlines. This calls for a structured search through a space of
demographic subgroups, and evaluation of their exceptionality in terms of behavior of a
response variable in repeated cross-sectional data (which is the form in which data from
both the HBSC and DNSSSU studies arrives). Hence, in this chapter, we deploy Excep-
tional Model Mining for Repeated Cross-Sectional data (EMM-RCS) [171] (Chapter 6) as a
sociological method.

EMM-RCS falls under the umbrella of Exceptional Model Mining (EMM) [54], which gen-
erally searches for coherent subgroups in a dataset that behave somehow exceptionally.
In EMM-RCS, this behavior becomes a societal trend that deviates from the average, pop-
ulation trend. Any type of deviation in the alcohol prevalence or trend thereof could be
helpful for developing tailored interventions and policies. Schools would want to know
how life satisfaction relates to trends in adolescent alcohol use. For public health depart-
ments, the relation with the degree of urbanization can be very informative. Furthermore,
it would be relevant to discover for which groups trends in monthly alcohol use follow a
different course than the average, population trend (i.e., a stronger or weaker decrease
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over time), or trends could run fairly stable. This might indicate subgroups of adolescents
that are exceptionally sensitive or insensitive to certain policy measures. In this chapter,
we seek demographic subgroups displaying the following three types of exceptional trend
behavior: (1) deviations of the prevalence of monthly alcohol use; (2) deviations in the
course (i.e., change-over-time) of the trend in monthly alcohol use; (3) horizontal trends
(i.e., no change-over-time) in monthly alcohol use.

7.2 Related sociological work
Analyzing the extent to which trends in adolescent alcohol use in the last decades vary
across subgroups is challenging for several reasons. First, with traditional statistical ap-
proaches, it is difficult to include many socio-demographic variables in the analysis be-
cause of the risk of an increased type-I error rate due to multiple hypothesis testing. In
order to prevent the finding of false significant results, it is therefore common to select
a few socio-demographic variables based on theory or existing literature. Although it is
sensible to restrict the number of statistical tests, in this way the possibility to discover
new types of subgroup-specific trends is limited. For instance, trends in adolescent alco-
hol use are mostly analyzed for subgroups based on gender, age, and educational track
[39, 40, 68, 160], but other variables such as ethnic background and family situation are
rarely included in the analysis or merely used as covariates.

The constraint on the number of tests also complicates the evaluation of combinations
of socio-demographic variables. According to intersectionality theory [36], adolescents
belong to multiple social groups and their social experiences are shaped by all these so-
cial group memberships together. Subsequently, the effect of belonging to a particular
social group on adolescents’ developmental outcomes should not be considered sepa-
rately from other social group memberships [35, 69]. When investigating the extent to
which adolescent alcohol use vary across subgroups, a common approach to studying the
interplay between social group memberships is to create dummy variables that indicate
group membership of combinations of socio-demographic variables. This can be done
by performing multiple group logistic regressions by creating 6 dummy variables for the
combined membership of a social group based on gender (2 groups) and age (3 groups)
[39], or with a structural equation model [68]. Apart from the fact that the manual dis-
cretization of a continuous variable into groups (as is done here for the variable age) may
already limit the potential for finding interesting interactions with other variables, a sta-
tistical approach where every subgroup is a separate dummy variable greatly reduces the
number of group memberships that can be considered. After all, the number of combina-
tions of group memberships scales exponentially with the number of socio-demographic
variables.

A further complexity in analyzing the extent to which societal trends vary across sub-
groups is the repeated cross-sectional research design that is used to collect trend data
[25]. For instance, the change-over-time of the monthly prevalence of alcohol use is as-
sessed by repeatedly sampling new individuals from a population at successive measure-
ment moments. This restricts statistical analysis to models that analyze changes in the
trend with respect to a reference year, by dummy-coding survey year, instead of consider-
ing the variation over time as a continuous event as can be done in longitudinal or time
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series data. When a regression model is used, survey year can be added as an indepen-
dent, continuous variable but its relationship with other independent variables or with
the (log-odds of the) dependent variable requires the assumption of linearity.

7.3 Data collection
Adolescent alcohol use in the Netherlands is monitored by two studies: the Dutch National
School Survey on Substance Use (DNSSSU) [161] and the Health Behaviour in School-aged
Children study (HBSC) [192]. Both studies are conducted every four years, with an offset of
two years between them: combining both studies results in 2-yearly data. We use DNSSSU
data from 2003, 2007, 2011, 2015, and 2019, and HBSC data from 2005, 2009, 2013, and
2017. For both studies, we use data of students in the first four years of secondary school
aged 12 to 16 (excluding younger or older students, as their numbers are very small). Data
are collected in October and November with a two-stage random sampling design where
schools are stratified by region. Within each school, 2 to 5 classes are randomly selected to
participate, and we collect data from all students in these classes. The adolescent response
rate in the classroom was above 92% in all years. Non-response on the student level mainly
occurs because of illness. The two studies use self-complete paper-and-pencil question-
naires from 2003 to 2013 and computer-assisted questionnaires from 2015 onward.

Both HBSC and DNSSSU assess alcohol use by asking adolescents how often they drank
alcohol in their entire life, in the last 12 months, and in the last 4 weeks. In this chapter we
use data on the 4-week prevalence. From 2003 to 2011, answer options were 0, 1, 2, 3, 4, 5,
6, 7, 8, 10, 11–19, 20–39, and 40 or more. The question has been asked in a subtly different
form from 2013 onwards: it asks for the number of days that adolescents drank alcohol,
with answer options never, 1–2 days, 3–5 days, 6–9 days, 10–19 days, and 30 days or more.
For this study, we flatten answer options 0 (2003–2011) and never (2013–2019) into 0, and
the other answer options into 1, resulting in the monthly prevalence of alcohol use.

We include in the analysis all socio-demographic variables that were available for all waves,
resulting in 10 variables: 2 are continuous (age, life satisfaction), 2 are dummy-coded (sex,
whether the adolescent lives with both parents), 3 are nominal (ethnic group, whether
father has a job, whether mother has a job), and 3 are ordinal (school level, level of urban-
ity, number of skipped classes/truancy). We let missing values be, since EMM-RCS can
natively handle missingness in socio-demographic variables [171].

7.4 EMM-RCS deployment
Exceptional Model Mining for Repeated Cross-Sectional data (EMM-RCS) was introduced
in Section 6.4 as a generic method to discover subgroups displaying exceptional trending
behavior across waves in repeated cross-sectional data. Here, we deploy EMM-RCS as
a sociological method, in order to understand the relation between socio-demographic
variables and trends in alcohol use.

Candidate subgroups are formed using combinations of selection conditions on socio-
demographic variables; these select adolescents from the full population. Such a combi-
nation is called a description, and could be as follows: age = 12 ∧ life satisfaction 8-10 ∧
0 skipped classes. The number of possible combinations of social group memberships is
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explosive, and evaluating the exceptionality for every candidate subgroup is infeasible (on
top of which, it would severely increase the type-I error rate). A search strategy is neces-
sary to efficiently traverse this space; our choice, out of the many strategies that exist for
this purpose, is detailed in Section 7.4.2.

7.4.1 Instantiations of our quality measure
For each generated subgroup, we must determine how exceptional its trend is. This is
captured through the definition of a quality measure ϕ, where canonically, higher values
represent higher exceptionality of behavior.

We denote data collected with a repeated cross-sectional research (RCS) design as follows:
Ψ = (Ωx1 , . . . ,Ωxt , . . . ,ΩxT ) is an ordered bag of T datasets where each Ωxt is collected at
wave xt for xt ∈ T . Since we analyze trends in alcohol use in the Netherlands between
2003 and 2019, T = {2003,2005, ...,2019} and t ∈ {1,2, ...,T } with T = 9. Every Ωxt is a bag
of records (i.e., individuals, adolescents) rxt ∈Ωxt of the form rxt = (a1, . . . , ak ,ℓxt ), where
a1, ..., ak are the sampled values from k socio-demographic variables and ℓi

xt
∈ {0,1} is a

binary value indicating whether adolescent r i
xt

has drunk alcohol in the past month. Fol-
lowing statistical theory [22], if variable ℓxt has a binomial distribution with parameters
nxt and µxt and when nxt is large, µxt can be approximated by the proportion of the sam-
pled values ℓxt with associated standard error se(µxt ):

µxt =
1

nt

nt∑
i=1

ℓi
xt

. (7.1)

se(µxt ) =
√
µxt (1−µxt )

nxt −1
. (7.2)

We say µxt is the prevalence of alcohol use at wave xt . The trend in monthly alcohol use is
then the collection of the prevalence estimates of all waves together: {µ2003,µ2005, ...,µ2019}.
Note that since Ψ is an RCS dataset, the sample sizes may differ per wave: we may have
nxt ̸= nxt ′ , t ̸= t ′. The total dataset size is nΨ =∑T

t=1 nxt .

To gauge whether a subgroup’s trend in monthly alcohol use deviates from the population
trend, EMM-RCS uses a generic quality measure [171]:

ϕRCS(D) = f
(
{zxt | xt ∈T }

)
(7.3)

zxt =
|θSG

xt
−θ0

xt
|

se(θSG
xt

)
. (7.4)

In the following, we detail how to instantiate Equations (7.3) and (7.4) to measure the three
types of exceptionality that are relevant for better understanding adolescent alcohol use,
as outlined at the end of Section 7.1.

Exceptional deviations of the prevalence

In order to discover subgroups of adolescents with trends in monthly alcohol use that
deviate from the average, population trend at any, unknown wave, we define θSG

xt
= µSG

xt
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and θ0
xt

= µΨxt
for all xt ∈ T . In other words, as a statistic in Equation (7.4) we use the

monthly prevalence of alcohol use as defined in Equation (7.1). Superscripts SG and Ψ
refer to the subgroup and the entire dataset respectively. Consequently, for every wave,
we compare the prevalence of monthly alcohol use in the subgroup with the prevalence
in the entire dataset.

We furthermore set f (·) = max, which means that for a given subgroup, we select the max-
imum of the T z-scores. In other words, the largest difference between a subgroup’s trend
estimates and the average, population trend estimates serves as the exceptionality value
of the subgroup. In practice, this means that we could both select a subgroup with a trend
that is very similar to the population trend but suddenly deviates at one particular wave,
and a subgroup with a trend that deviates over the entire course.

Exceptional slope deviations

Subgroups with trends with an exceptional increase or decrease can be discovered by fo-
cusing on the slopes of the prevalence estimates. A slope is simply the difference between
two subsequent prevalence estimates. In order to account for small fluctuations between
the prevalence values estimated in HBSC and DNSSSU, we first take a weighted moving
average of two subsequent prevalence estimates, and then calculate the slope between
two averages. Denoting a weighted moving average of the prevalence estimates at occa-
sions xt and xt−1 with τxt , we define the slope as θxt = τxt −τxt−1 . Note that for T waves,
there will be T −1 averages and T −2 slopes. The standard error of the weighted average
of two proportions follows from statistical theory,

se(τxt ) =
√

b2
xt

se(µxt )2 +b2
xt−1

se(µxt−1 )2, (7.5)

where the weights b are based on the sample sizes nxt and nxt−1 . The standard error of the
slope is similar but with weights b = 1.

We compare the slopes of the subgroup’s trend with the slopes of the population trend.
Therefore, θ0

xt
= θΨxt

. Again, we choose f (·) = max, which means that we consider sub-
groups to be exceptional when there is some slope at some wave that greatly differs from
the slope in the population trend. We could thus discover subgroups with a sudden in-
crease or decrease in the trend and subgroups with completely deviating courses.

Exceptionally horizontal trends

Discovering subgroups of adolescents with horizontal trends in monthly alcohol use does
not require a comparison between a subgroup’s trend and the average, population trend.
Therefore, θ0

xt
= 0. Furthermore, we define θSG

xt
= τxt −τxt−1 to be the slope of the weighted

moving average in the subgroup. In order to directly evaluate whether the slope estimate
is close to 0, we define se(θSG

xt
) = 1. Then, we first select all the slopes that are close to zero

with a certain threshold ϵ and sum the absolute difference between these slopes and that
threshold ϵ. Formally, f (·) = fcountsum(ϵ) = ∑

{abs(zxt −ϵ) | xt ∈T ′′, zxt < ϵ} with |T ′′| =
T −2 because T waves give T −1 weighted moving averages and T −2 slopes. In this way,
we favor subgroups that have many slopes that are close to zero (because the count will be
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high) and distinguish between subgroups by favoring the most horizontal ones (because
the absolute difference will be high). The value for ϵ can be chosen based on theory or by
means of one of the validation methods; we report parameter sensitivity experiments for
ϵ in Section 7.5.3.

7.4.2 Experimental approach
Table 7.1 provides an overview of the sample size, monthly prevalence of alcohol use and
associated standard error per year for the entire dataset. Overall, the trend in alcohol
shows a linear decrease from 2003 to 2015 and a stable pattern from 2015 onward. The
population trend can also be found as the black trend line in all subfigures in Figure 7.1.

To discover exceptional subgroups of adolescents, we employ beam search, with param-
eters w = 20, d = 3, and q = 20 (see Algorithm 1 in Section 2.3.2). Since the number of
socio-demographic variables in this study is limited (k = 10), we expect that higher set-
tings will lead to spurious subgroups through beam pollution and reduced interpretabil-
ity of results. We dynamically discretize continuous variables using the lbca strategy with
octiles from [135].

In particular in this chapter, we evaluate three techniques that validate the significance of
discovered subgroups:

1. we employ Dominance-Based Pruning (DBP) [201], removing conditions that de-
crease the quality of a subgroup,

2. we let resulting subgroups undergo validation with the null Distribution of False
Discoveries (DFD) [55] with parameters m = 100 and a one-sided significance level
αDF D = 0.025,

3. we demand that added conditions improve the subgroup quality over the parent
node in the beam by at least 2.5%. This Minimum Improvement (MI) threshold was
determined together with domain experts: an increase in the proportion of adoles-
cents that drank alcohol in the last month should be ≥ 1 percentage point.

Furthermore, we aim to reduce redundancy in the result list using a Weighted Coverage
Scheme (WCS) (γ = 0.9) and Description-Based Selection (DBS) with a fixed size of 2w
(see Section 2.3.3 for more background information).

7.5 Discovering exceptional trends in alcohol use
In the following, we discuss the demographic subgroups that we found with each of the
three types of exceptionality. In each subsection, we report a table (Tables 7.2–7.4) of all
subgroups found before pruning. The subgroups are manually split into Trend Groups
(TG) that share certain characteristics. From each TG, we take the most exceptional sub-
group and display its trend in the corresponding subfigure of Figure 7.1. Trends of the
other subgroups, after pruning, are available on our interactive dashboard.1

1We provide a link to the dashboard and additional material such as descriptive information, missingness per-
centages per category per variable per year, information on data availability, and all experimental code at
https://github.com/RianneSchouten/AlcoholTrends_HBSCDNSSSU_EMM/.

https://github.com/RianneSchouten/AlcoholTrends_HBSCDNSSSU_EMM/
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7.5.1 Discovering exceptional deviations of the prevalence
In this section, we present results for social group memberships that lead to deviations
of the prevalence of monthly alcohol use between 2003 and 2019 in the Netherlands. The
original top-q = 20 discovered by beam search before the application of any pruning strate-
gies is listed in Table 7.2. DBP and validation with the DFD have not resulted in any
changes in the top-20 subgroups of adolescents. The false discoveries were distributed
around a mean quality of 4.22 (SD: 0.48) which results in a threshold value atαDF D of 5.17.
Because the subgroup with the lowest quality value has a value of 25.6, none of the top-20
subgroups are rejected. Validation with MI removes 5 conditions on socio-demographic
variables. For three subgroups, the new descriptions (after removing a condition) were
similar to an existing description in the top-20, which reduced the list of subgroups to a
top-17.

Comparing the prevalence of adolescent alcohol use in the past month in Figure 7.1a with
the overall population, prevalence is down in two trend groups (1 and 2) and up in the
other three (3, 4, and 5). The subgroups with trends below the population trend describe
adolescents who are relatively young, who do not skip classes, who are fairly satisfied with
their life, and who live in moderately to highly urbanized areas. In the trend groups where
more adolescents drink alcohol, age is an important factor as well. Here, relatively older
adolescents are selected. Being in an older age group interacts with having a Dutch or
western ethnicity (thus excluding non-western ethnicities).

For all trend groups, the entire trend line deviates from the population trend. Even though
the quality measure focuses on a maximum deviation at any point in time (Section 7.4.1),
the prevalence in monthly alcohol use differs from the population prevalence at all waves
(Figure 7.1a). Apparently, a subgroup trend that deviates from the population trend at one
particular wave likely deviates at other occasions too. The change-over-time of alcohol
use resembles that of the population trend in all subgroups, maybe except for trend group
5 (subgroup 13); monthly alcohol use decreases between 2003 and 2015 and flattens after-
wards.

7.5.2 Discovering exceptional slope deviations
This section presents results for social group memberships that lead to deviations in the
course (i.e., change-over-time) of the trend in monthly alcohol use. The original top-q =
20 discovered by beam search before the application of any pruning strategies is listed in
Table 7.3. DBP and validation with the DFD (mean quality 2.55 with SD of 0.21, value at
αDF D is 3.07, smallest quality value is 3.8) does not result in any changes in the top-20

Table 7.1: Sample size, prevalence estimate and associated standard error per year in the entire dataset.

Survey DNSSSU HBSC DNSSSU HBSC DNSSSU HBSC DNSSSU HBSC DNSSSU
Year 2003 2005 2007 2009 2011 2013 2015 2017 2019
n 6791 5272 6234 5490 6374 5421 6232 6060 5022
PREV 0.54 0.50 0.44 0.37 0.34 0.26 0.23 0.22 0.23
se(PREV) 0.0061 0.0069 0.0063 0.0065 0.0060 0.0060 0.0054 0.0053 0.0060
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(a) Exceptional prevalence: overall population and five exceptional sub-
groups (cf. Table 7.2).
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(b) Exceptional slopes of weighted moving average of the prevalence:
overall population and five exceptional subgroups (cf. Table 7.3).
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(c) Exceptionally horizontal weighted moving average of the prevalence:
overall population and four exceptional subgroups (cf. Table 7.4).

Figure 7.1: Exceptional trends in monthly alcohol use among Dutch adolescents for three types of trend
deviations in monthly alcohol use: (a) exceptional deviations of the prevalence; (b) exceptional deviations
in the course of the trend; (c) exceptionally horizontal trends. Black displays the population trend.
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Table 7.2: Top-20 subgroups of adolescents with exceptional deviations of the preva-
lence of monthly alcohol use. Validation with a minimum improvement threshold
results in the removal of 5 conditions (in red; the quality improvement is 1.4, 1.7,
0.4, -1.0 and 0.3 percent respectively). Three conditions narrowly exceed the thresh-
old with 2.6, 2.8, and 2.6 percent, respectively (in orange).

TG SG Cov Description

1

1 0.11 age: 12 ∧ skipped classes: 0 ∧ urbanity: at least moderate
2 0.15 age: 12 ∧ life satisf: 7-10 ∧ skipped classes: 0
3 0.14 age: 12 ∧ life satisf: 7-10 ∧ urbanity: at least little

10 0.09 age: 12 ∧ skipped classes: 0 ∧ sex: girl

2

4 0.35 age: 12-13 ∧ skipped classes: 0 ∧ life satisf: 7-10
5 0.37 age: 12-13 ∧ skipped classes: 0 ∧ life satisf: 6-10
7 0.40 age: 12-13 ∧ skipped classes: 0
9 0.25 age: 12-13 ∧ life satisf: 6-10 ∧ urbanity: at least moderate

12 0.37 age: 12-13 ∧ life satisf: 7-10
14 0.40 age: 12-13 ∧ life satisf: 6-10
16 0.41 age: 12-13 ∧ skipped classes: 0-1
18 0.43 age: 12-13
20 0.34 age: 12-13 ∧ school level: at least vmbo-t

3
6 0.26 age: 15-16 ∧ ethnicity: dutch, western
8 0.24 age: 15-16 ∧ ethnicity: dutch

4
11 0.48 age: 14-16 ∧ ethnicity: dutch, western
15 0.44 age: 14-16 ∧ ethnicity: dutch

5
13 0.32 age: 15-16
17 0.29 age: 15-16 ∧ life satisf: 0-9
19 0.29 age: 15-16 ∧ father job: yes, don’t know

subgroups of adolescents with exceptional trend deviations. Validation with MI indicates
the removal of 8 conditions from 7 subgroups; 6 of which have a description that is similar
to another one. 14 subgroups will be remaining.

Figure 7.1b presents the weighted moving average of the trends in monthly alcohol use for
five main trend groups. Note that not all subgroups in the same trend group have similar
trend values (as was the case in Section 7.5.1). For instance, while subgroups 11 and 15 are
assigned to trend group 1, they are much larger than subgroups 1, 4, 5, and 8, and hence
their trend in alcohol use will be closer to the population trend (higher prevalence values).
However, the trend courses (i.e., change-over-time) of subgroups 11 and 15 are similar to
those of the other subgroups in trend group 1.

We find various trend shapes. Trend groups 1 and 3 (red and orange lines in Figure 7.1b)
decrease at a slower pace than the overall population, while trend group 4 (blue line) de-
creases much faster, especially between 2009 and 2015. Between 2003 and 2013, the slopes
of trend groups 2 and 5 (purple and green lines) are fairly close to 0, while the population
trend decreases in those years.

The variation in exceptional trend courses is also reflected in the corresponding social
group memberships. In trend group 1, adolescents who are young and satisfied with life
are less likely to drink alcohol than the average adolescent. Trend group 3 has a low de-
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Table 7.3: Top-20 subgroups of adolescents with exceptional deviations in the course of the
trend in monthly alcohol use (i.e., exceptional slope deviations). Validation with a minimum
improvement threshold results in the removal of 8 conditions (in red, the quality improvement
is -1.4, -2.9, -1.4, -1.5, -4.3, 2.4, 2.1, and -2.3 percent, respectively).

TG SG Cov Description

1

1 0.19 age: 12
2 0.17 age: 12 ∧ ethnicity: dutch, non-western
3 0.15 age: 12 ∧ complete family: yes
4 0.17 age: 12 ∧ ethnicity: dutch, non-western ∧ life satisf: 0-10
7 0.16 age: 12 ∧ ethnicity: dutch, western
8 0.15 age: 12-13 ∧ life satisf: 9-10
9 0.29 age: 12-13 ∧ life satisf: 8-10

13 0.37 age: 12-13 ∧ life satisf: 7-10
17 0.41 age: 12-13 ∧ ethnicity: dutch, non-western
15 0.54 age: 12-14 ∧ ethnicity: dutch
20 0.53 age: 12-14 ∧ mother job: yes

2
5 0.1 urbanity: very high ∧ age: 14-16

11 0.14 urbanity: very high ∧ life satisf: 0-9
19 0.14 urbanity: very high ∧ age: 13-16

3
6 0.26 age: 15-16 ∧ school level: at least vmbo-p/t

14 0.32 age: 15-16
18 0.11 skipped classes: ≥ 1

4 10 0.23 school level: at least havo ∧ urbanity: at most moderate
5 12 0.14 age: 15-16 ∧ urbanity: at least high
6 16 0.13 school level: vmbo-p/t - havo ∧ ethnicity: western, non-western

crease in alcohol use as well, but this concerns older adolescents (subgroups 3 and 9) or
adolescents who skip classes in school (subgroup 12). The conditions on age and the con-
dition on skipped classes do not appear in a description together: they describe two dis-
tinct social group memberships. This could indicate that these factors singularly induce
an effect on alcohol use and that there is no interplay.

In trend group 2, the urbanization degree of the area where adolescents live has an im-
portant relation with the trend in alcohol use. In 2003, about 40% of the adolescents
who live in highly urbanized areas had drunk alcohol in the past month. That percentage
stayed stable until 2013, when it suddenly dropped to about 20%. Similar effects occur in
trend group 5 (subgroup 11), encompassing adolescents in lower educational tracks with
a non-Dutch ethnicity. An inverted trend course is followed by trend group 4 (subgroup
6). Between 2003 and 2013 the number of adolescents who drank alcohol has decreased
stronger than in the overall population, and that decrease suddenly stopped around 2013.
Here, we find an interplay between a school level that is at least HAVO and a living area
that is at least moderately urbanized.

7.5.3 Discovering exceptionally horizontal trends
This section presents results for social group memberships that lead to exceptionally hor-
izontal trends in monthly alcohol use. The original top-q = 20 discovered by beam search
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Table 7.4: Top-20 subgroups of adolescents with exceptionally horizontal trends in monthly
alcohol use. Validation with the DFD results in the removal of 10 subgroups (in red).

TG SG Cov Description

1

1 0.09 ethnicity: non-western ∧ life satisf: 0-8 ∧ skipped classes: 0-2
3 0.09 ethnicity: non-western ∧ life satisf: 0-8 ∧ skipped classes: 0-4
4 0.08 ethnicity: non-western ∧ life satisf: 0-8 ∧ school level: ≤ havo/vwo
6 0.08 ethnicity: non-western ∧ age: 13-16 ∧ school level: ≥ vmbo-t

2
2 0.08 ethnicity: non-western ∧ age: 14-16 ∧ urbanity: ≥ moderate

15 0.09 ethnicity: non-western ∧ age: 14-16 ∧ urbanity: ≥ little
20 0.08 ethnicity: non-western ∧ age: 14-16 ∧ skipped classes: 0-2

3
5 0.10 ethnicity: non-western ∧ complete family: yes ∧ skipped classes: 0-4

11 0.10 ethnicity: non-western ∧ complete family: yes ∧ father job: yes,no
4 9 0.11 school level: ≥ havo/vwo ∧ ethnicity: (non)-western ∧ life satisf: 0-8

7 0.28 age: 12-13 ∧ life satisf: 8-10 ∧ skipped classes: 0-1
8 0.07 skipped classes: ≥ 1 ∧ age: 14-16 ∧ school level: ≤ havo/vwo

10 0.14 age: 12 ∧ ethnicity: dutch ∧ skipped classes: 0-6
12 0.30 age: 12-13 ∧ life satisf: 7-10 ∧ school level: at least vmbo-t
13 0.08 urbanity: very high ∧ school level: ≤ havo ∧ age: 13-16
14 0.17 age: 12-13 ∧ sex: boy ∧ school level: ≤ havo/vwo
16 0.08 age: 12-13 ∧ life satisf: 9-10 ∧ school level: ≤ havo
17 0.10 age: 12 ∧ life satisf: 6-8
18 0.36 age: 12-13 ∧ life satisf: 7-10 ∧ skipped classes: 0-1
19 0.10 sex: girl ∧ ethnicity: (non)-western ∧ skipped classes: 0-4

before the application of any pruning strategies is listed in Table 7.4. When ϵ is set to the
prevalence points 0.005, 0.01, and 0.02, validation with the DFD results in the rejection of
16, 10, and 3 subgroups, respectively (out of q = 20 subgroups). In other words, when we
set the threshold too strictly (ϵ = 0.005) the found subgroups are spurious results. How-
ever, when we set the threshold too loosely (ϵ= 0.02), we find subgroups with trends that
are not horizontal at all (for T = 9 waves, a decrease of 0.02 prevalence point per occasion
would allow the prevalence to drop with 0.16 over the entire measurement period; it is
indeed questionable whether such a trend can be considered flat). Therefore, we apply
ϵ= 0.01 and end up with 10 subgroups.

Being a member of a non-western ethnic group is an important factor in all trend groups.
The trends in alcohol use are fairly horizontal from 2003 to 2013, then drop, and again
stay horizontal after 2015. A similar pattern was found in Section 7.5.2, but there we se-
lected adolescents who live in highly urbanized areas or who attend a lower educational
track and have a non-Dutch ethnicity (trend groups 2 and 5 in Table 7.3). When we specif-
ically search for horizontal trends, having a non-western ethnicity turns out be the most
dominant factor.

The other conditions on socio-demographic variables in Table 7.4 may confuse because
they seem to select the general population of adolescents. For instance, it is likely that
most adolescents have a life satisfaction between 0 and 8 and may skip between 0 and 2
classes (subgroup 1). However, all these conditions have passed the minimum improve-
ment threshold. To understand the relevance of conditions 2 and 3 in Table 7.4, it is useful
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to consider them as exclusion criteria rather than a selection. In the population, adoles-
cents with a non-western ethnicity make up 15%. If, from that group, adolescents are ex-
cluded who have a life satisfaction of 9 or 10 and have skipped at least 3 classes, subgroup
1 contains only 9% of the adolescents. Hence, this exclusion is a reduction of 40%. It in-
dicates that adolescents with a non-western ethnicity who additionally have a very high
life satisfaction and skip classes do not have such a stable and horizontal trend in alcohol
use as adolescents with a non-western ethnicity who have a low to average life satisfaction
and skip maximally 2 classes.

A similar reasoning can be applied to the other subgroups; given that an adolescent has a
non-western ethnicity, the trend in alcohol use is not as horizontal for those who are rela-
tively young (age 12, 13; subgroups 2, 6, 9, 10) or who do not live with both parents (sub-
groups 5, 8). A combination with conditions on school level, degree of urbanization, and
number of skipped classes may increase this effect further. Overall, having a non-western
immigration background is an important factor for having a stable trend in alcohol use,
but within this group there are adolescents whose alcohol use is less stable.

7.6 Discussion
Discovered subgroups of adolescents with exceptional trends in monthly alcohol use con-
firm existing knowledge that for younger adolescents, interactions with memberships of
social groups that do not skip classes, have a high life satisfaction and live in moderately to
highly urbanized areas lead to a lower prevalence of monthly alcohol use (Section 7.5.1).
For older adolescents, we find an interaction with Dutch or western ethnicity that leads to
a higher prevalence of monthly alcohol use. Notwithstanding the confirmation that age
has a strong relation with alcohol use [161, 192], EMM-RCS discovers interactions with
other socio-demographic variables that provide relevant information not only for policy
makers but also as a starting point for further research. For example, we discover a re-
lation between ethnic background and having a horizontal trend in monthly alcohol use,
both when analyzing general deviations in the course of the trend (Section 7.5.2) and when
specifically searching for horizontal trends (Section 7.5.3).

A more in-depth understanding of subgroups of adolescents displaying stable alcohol use
trends is important: domain knowledge determines whether such trends are worrisome
and warrant attention. Examples of opposite hypotheses can be drawn from subgroups
reported in Section 7.5.2: for the adolescents who are young and satisfied with life, the
prevalence is already so low that it cannot decrease further and hence the subgroup is not
that interesting; for the older adolescents or adolescents who skip classes, the more stable
trend may indicate an insensitivity to existing policies and interventions.

Our results spawn two hypotheses for further sociological research. On the one hand, for
adolescents with a higher educational level and for adolescents living in at least moder-
ately urbanized areas, the trend in alcohol use decreases at a faster pace (cf. Section 7.5.2).
This may indicate that these groups of adolescents are particularly sensitive to policies or
interventions. On the other hand, the following social group memberships resulted in a
horizontal trend between 2003-2013, followed by a sudden drop in 2013: having a non-
western ethnicity and a lower educational track (subgroup 11 in Table 7.3, subgroups 6, 7



7

118 Conclusion

in Table 7.4), having a non-western ethnicity and living in an area with a low urbanization
degree (subgroups 2, 9 in Table 7.4) and living in an area with a high urbanization degree
(subgroups 2, 7, 13 in Table 7.3).

Not for all forms of exceptional trend deviations we find evidence that there is interplay
between social group memberships. We find subgroups of older adolescents and a sub-
group of adolescents who skip classes whose trend decreases at a slower pace than the
population trend (cf. Section 7.5.2). Here, the hypothesis that being a member of multiple
social groups has a cumulative [35, 69] or even an aggravated effect on adolescent alco-
hol use (a.k.a. the multiple jeopardy hypothesis) [49, 100] cannot be accepted. This is in
line with other studies that also do not find unequivocal support for the joint effects of
subgroup memberships on adolescent mental health [99].

7.7 Conclusion
Analyzing societal trends is an important line of research in social sciences, as it assesses
how the behaviors, attitudes, and feelings of populations change over periods of time and
for which groups this is particularly true. However, analyzing the extent to which soci-
etal trends vary across subgroups in the population is challenging. The number of socio-
demographic variables that can be included in the analysis is often restricted. Traditional
statistical approaches rely on the assumption of linearity, require manual discretization or
dummy-coding, or may not be suitable for data collected with a repeated cross-sectional
research design. Hence, it is difficult to study the interplay between social group member-
ships and to assess whether combinations of conditions on socio-demographic variables
have a cumulative or aggravated effect on the course of the trend.

We demonstrate the value of deploying Exceptional Model Mining for Repeated Cross-
Sectional data (EMM-RCS) [171] as a sociological method. EMM-RCS uses a heuristically-
guided search algorithm that discovers subgroups with trends that deviate from the av-
erage, population trend. Because subgroups are formed by selecting people who are a
member of particular combinations of socio-demographic groups, EMM-RCS provides
interpretable, highly relevant information for policy makers about the needs of specific
subgroups in society.

We analyze trends in adolescent alcohol use between 2003 and 2019 in the Netherlands.
We investigate whether we can determine (combinations of) social group memberships
displaying 1) deviations of the prevalence of monthly alcohol use, 2) deviations in the
course of the trend in monthly alcohol use, and 3) exceptionally horizontal trajectories
in the trends in monthly alcohol use. Our findings confirm existing knowledge that age,
educational level, and migration background are important descriptors of monthly alco-
hol use, and that an interplay effect exists with life satisfaction, urbanization degree, and
truancy. Our findings also spawn two hypotheses for further sociological research, and
provide disconfirming evidence to a sociological hypothesis that aligns with existing stud-
ies. EMM-RCS thus serves as a hypothesis-generating source that due to its exploratory
nature works as a starting point in further understanding the interplay between socio-
demographic variables and societal trends.
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Exceptional Learning Behavior in
Descriptive and Target Space

Numerical processing competences such as the ability to enumerate small sets of dots and
to compare the relative magnitudes between sets are diagnostic markers of young children’s
emerging math abilities. In the FUnctional Numerical Assessment (FUNA) study, these abil-
ities are assessed using several computer-assisted tasks, among which is a Dot Enumeration
(DE) task where children determine the number of dots in a visual array. It seems that there
is a natural threshold around 3 or 4 dots: below this threshold, it is possible to determine
the correct number at a glance, known as subitizing; above the threshold, children must
count the dots in some way. In this chapter, we develop a piecewise linear regression model
class for Exceptional Model Mining with various quality measures discovering subgroups of
children whose subitizing curves exhibit atypical patterns. The dataset does not follow the
conventional data mining representation where each individual is described with a tuple of
attribute values. Rather, for each task, students perform multiple items, one after the other,
taken from a larger set of items, and not necessarily in the same order. Hence, we discuss
a manner (tailored to the dataset at hand) to transform this item-performance data into
the flat-table form that the typical data mining task expects. Domain experts confirm that
our experiments evidently demonstrate how children’s subitizing performance and count-
ing skills are related to math abilities. Our findings provide opportunity for further devel-
opment of assessment tools and intervention programs.

The contents of this chapter have previously appeared in Schouten, R. M., Duivesteijn, W.,
Räsänen, P., Paul, J. M., and Pechenizkiy, M. Exceptional Subitizing Patterns: Exploring
Mathematical Abilities of Finnish Primary School Children with Piecewise Linear Regres-
sion. In Proc. ECML PKDD (2024), p. 66–82 [174].
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8.1 Introduction
Learning mathematics is hard. At the neuro-cognitive foundation of young children’s
math development are core numerical processing competences such as the ability to enu-
merate small sets of dots and to compare the relative magnitudes between sets [59]. These
numerical competences are diagnostic markers of emerging math abilities from as early
as preschool age [71] which make them targets for conceptually motivated intervention
programs [18].

We investigate characteristics that define exceptional patterns of young children’s enu-
meration ability. Generally, enumeration performance reflects two distinct processes: the
subitizing system where small sets (1-4 dots) are recognized accurately and rapidly, and
the counting system where larger sets are enumerated more slowly perhaps by counting
or other enumeration strategies [157]. Figure 8.1 gives an example; the enumeration re-
sponse time of small sets is relatively flat while the counting slope is steeper. The inflection
point demarcates the subitizing range from the counting range.

Individual differences in subitizing range predict math ability [130]. An inability to subitize
is associated with dyscalculia [115]. There is value in accurately and reliably estimating
the parameters that define subitizing patterns (initial reaction time, range, slope). Com-
mon algorithms used for estimating the subitizing range can produce inconsistent results
[120], especially among individuals with dot enumeration curves that deviate from the
typical curve.

We develop a piecewise linear regression model class for Exceptional Model Mining (EMM)
[54] to discover subgroups of children whose subitizing curves exhibit atypical patterns.
EMM is a local pattern mining framework seeking coherent subgroups in a dataset that
somehow behave exceptionally. We develop various quality measures based on log likeli-
hood that allow us to discover atypical subitizing patterns such as deviating initial reaction
times, subitizing ranges, counting slopes, or a combination of those.

Figure 8.1: Dot enumeration response
time regressed on set size (number of
dots) using segmented linear regression
with one break point.

Figure 8.2: An example of a dot enumeration item for set
size 4; the correctly answered items are used in Figure 8.1.
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We use data collected by the FUnctional Numerical Assessment (FUNA) study [155]. Nu-
merical processing competences and math abilities are assessed using several computer-
assisted tasks. Some of these tasks contain a fixed number of questions, or items; others
are time-based and the number of answered items will vary per child. Items are taken
from a larger set of items, and not necessarily answered in the same order. Consequently,
the dataset does not follow the conventional data mining representation where each indi-
vidual can be described with one tuple of attribute values, and where a column contains
the same semantic information for each individual.1 Hence, pre-processing is required to
allow existing algorithms to search through the space of candidate subgroups. We discuss
a manner tailored to the item-performance data at hand.

The main contributions of this chapter are: 1) an EMM model class and various quality
measures for segmented linear regression; 2) a deeper understanding of how subitizing
patterns relate to other numerical processing competences and emerging math abilities;
3) an effective pre-processing technique for handling repeatedly measured attributes in
descriptive space.

8.2 The FUnctional Numerical Assessment study
The FUnctional Numerical Assessment (FUNA) project [155] is a large-scale research pro-
gram in Finland to develop digital assessment tools for detecting dyscalculia and dyslexia.
Currently, several studies are run to evaluate the validity and reliability evidence of the
tasks [78]. The current version has been normed in Finnish and Finnish-Swedish lan-
guages for grade levels 3 to 9 (9 to 15 years old).

In the FUNA-DB (Dyscalculia Battery) the children respond to six digital (CAI) tasks using
a tablet or a computer: Number Comparison (NC), Dot Matching equivalence task (DM),
Single Digit Addition (SA), Single Digit Subtraction (SS), Combination Addition (CA) and
Number Series (NS). Every task consists of multiple questions, or items. The tasks SA, SS,
CA, and NS measure arithmetic fluency, and the items considered easier are provided ear-
lier than more difficult items, but the exact order is not the same between children (i.e.,
quasi-random). In the number processing tasks (NC, DM), a set of predefined items are
presented in a fully random order. Figure 8.2 displays an example of a DM item. Chil-
dren compare a symbolic number (1-9) to a non-symbolic representation of a number.
The location of the dots is randomized as well. When the symbolic and non-symbolic
representations are the same, and when the children answer correctly, the DM task can
be considered a Dot Enumeration (DE) task: determining the number of dots in a visual
array.

Table 8.1 displays a dataset slice. On the right side (to be used as target attributes in the
EMM model class, see Section 8.6), we present information from the DE task. Attributes ℓ1

and ℓ2 represent the set size (1-9) and response time in milliseconds respectively. These

1Children build up experience with the type of tasks at hand while the study unfolds. Suppose that two children
perform Task T , but Child A is given this task earlier in the procedure than Child B . Then, Child B will have
built up more experience than Child A with similar tasks, before executing Task T . A conventional data mining
representation of this data would record performance of both children on Task T in the same column, but this
belies the reality that these performances are not measured in an equal manner.
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Table 8.1: Small slice of FUNA dataset. Some descriptors originate from the NC-task (a2,a3,a4),
others from the SA, SS, or CA task (not shown here), or from the general background information
(sex, a1). In our EMM instance, target attributes originate from the DE task (ℓ1, ℓ2). All task-
based attributes contain data from multiple items, resulting in tuples of values. The number of
values per tuple may vary per child and per task.

sex NC DE
i a1 a2 a3 a4 ℓ1 ℓ2
1 f (4,3,1,4,. . .) (1,0,0,. . .) (1200,1150,. . .) (5,1,8,. . .) (1330,14. . .)
2 f (2,3,1,7,. . .) (1,1,1,. . .) (1240,1510,. . .) (8,2,1,. . .) (2630,21. . .)
3 m (5,2,8,6,. . .) (0,1,1,. . .) (1490,1250,. . .) (4,9,2,. . .) (2130,19. . .)
4 f (8,2,1,5,. . .) (0,1,1,. . .) (1180,1120,. . .) (7,4,5,. . .) (2610,16. . .)

attributes are the dependent and independent variables in a segmented linear regression
model class as visualized in Figure 8.1.

We indicate the fact that we obtain data from multiple DE items per child, by using tuples
(e.g., for the first item of child 1, the set size was 5 and response time was 1330 ms). For
the SA, SS, and CA tasks, the number of items (tuple-length) differs per child; for the NC
and DE tasks, the tuple-length is 52.

Apart from the set size and response time for each task, we may consider information
such as whether the item is answered correctly, what is the correct answer, and what is the
numerical distance between two numbers shown in a certain item. All this information is
represented as separate attributes (e.g., attribute a3 indicates where the items on the NC
task have been answered correctly (1) or not (0)) and will be used to discover and describe
exceptional subgroups of children. We also have some descriptive information, such as a
child’s sex (a1), grade, and the language (Finnish or Swedish) in which they executed the
tasks.

The data format as used by most traditional data mining algorithms is also known as a
propositional table; these are single-table representations where each individual can be
described with one term. In the attribute-value case, this term is a tuple of attribute values
[116]. For instance, a student could be represented by a three-tuple specifying age, grade
and language. Generally in EMM, we let the subgroup description be a conjunction of se-
lection conditions over the descriptors, where condition sel j is a restriction on the domain
A j of the respective attribute a j . For instance, a description sex = girl∧language = Finnish
covers all girls who executed the FUNA tasks in Finnish.

However, for all attributes other than sex, grade and language, our dataset does not follow
this conventional data mining representation; a descriptive attribute is not associated to
one value, but rather to a tuple of values. In this case, it is unclear what it means to apply
a selector sel j directly; a selector a2 ≤ 3 would select items rather than individuals and
a selector such as a2t ≤ 3 where t refers to the item indicator, would inflate the number
of descriptors, which is detrimental to efficient traversal of the search space. In addition,
such a selector has little conceptual meaning, again because the items are quasi-randomly
ordered and item t is not the same across children. We will provide a more satisfactory
alternative in Section 8.5.
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8.3 Background
Exceptional Model Mining (EMM) was introduced in Section 2.3. In short, EMM [54] is
a Local Pattern Mining (LPM) framework seeking coherent subgroups in the dataset that
somehow behave exceptionally. The attributes are divided into descriptors a1, . . . , ak and
targets ℓ1, . . . ,ℓm . DatasetΩ is then a bag of n records r ∈Ω of the form

r = (a1, . . . , ak ,ℓ1, . . . ,ℓm). (8.1)

Formal definitions for subgroup descriptions and quality measures were given in Defini-
tions 2.1 and 2.2, respectively.

In traditional EMM, the combination of Equation (8.1) and a description language based
on conjunctions of selection conditions implicitly assumes the data to be in a flat-table
format where every record is an individual that is described by a tuple of attribute values,
and placed on a new row in the single flat-table. In contrast, in this chapter, an attribute a
or ℓmay or may not be measured repeatedly per individual i . We focus our notation on the
descriptive attributes, and write ai

j t to denote the t th measurement of the j th descriptive

attribute for the i th individual. Compared to Equation (2.1), the form of the descriptive
part of individual r ∈Ω changes to:

r = (
(a11, a12, ..., a1t , ..., a1t1 ), (a21, ..., a2t2 ), ..., (ak1, ..., aktk

)
)

, (8.2)

where t i
j refers to the number of repeated measures of attribute a j for individual i ∈

{1,2, ...,n}, which may vary across individuals and attributes; we let t j = maxi=1,2,...,n t i
j .

Some descriptors may be measured only once per individual (such as sex in Table 8.1);
then, t i

j = 1 for all i .

8.3.1 Segmented linear regression
The goal of regression is to predict the value of an attribute y given a new value of x, where
x is a random draw from a vector of variables X = (X1, . . . , Xd ). The simplest linear model
for regression is one that involves a linear combination of the input variables and param-
eters w: f (x,w) = wT x. We additionally aim to model the uncertainty, modeling a predic-
tive distribution p(y |x) by assuming that the deterministic function f (x,w) has additive
Gaussian noise with zero mean and precision β (inverse variance). We then obtain the
likelihood function:

p(y |x,w,β) =N (y | f (x,w),β−1) =
n∏

i=1
N (y[i ] | wT x[i ],β−1), (8.3)

Next, estimating w and β using Maximum Likelihood Estimation shows that the log likeli-
hood of a regression model depends on the sum-of-squares error function (SSR) [23] (see
[173, Section 1] for an elaboration):

ln p(y |x,w,β) ≈ SSR(y, f (x,w)) =
n∑

i=1

(
f (x[i ],w)− y[i ]

)2 .
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Segmented linear regression appears to require non-standard optimization techniques.
However, one can parameterize the model such that it can be modeled using an iterative,
linear approach [141]. We focus on modeling two line segments between response vari-
able y and one explanatory variable xh by fitting the terms:

y = g (xh ,α,β,ψ) =αxh +β(xh −ψ)+ (8.4)

where (xh −ψ)+ = (xh −ψ) · I (xh > ψ) where I (·) is the indicator function equal to 1 if
the statement is true and 0 otherwise. Consequently, ψ is the x-axis break point, α is the
slope of the line segment to the left of ψ, and β is the difference in slopes between the
line segments to the left and right of ψ. Next, [141] iteratively fit linear models of the form
αxh +βU (s)+γV (s) with U (s) = (xh −ψ(s))+ and V (s) =−I (xh >ψ(s)). Every iteration, ψ̂(s+1)

is updated through
(
ψ(s+1) −ψ(s)

) = γ̂/β̂ and when the algorithm stops and γ̂ ≈ 0, the sth

approximation is the Maximum Likelihood Estimate: ψ̂(s) ≡ ψ̂ [141].

8.4 Connections to existing SD/EMM approaches
Linear target models for EMM are not a new concept [143]. Existing model classes use
QMs comparing a regression parameter between the subgroup and a reference model.
Instead, we follow the approach of [188] and [170] who build QMs on the log likelihood.
These QMs do not directly compare parameter estimates but rather evaluate the overall fit
of a model estimated on the subgroup. In addition, in this chapter, we utilize the special
situation that when we assume Gaussian noise, maximizing the log likelihood is similar to
minimizing the residuals sum-of-squares. This characteristic simplifies the notation and
calculation of our QMs.

Our dataset has a nested structure: we aim to create subgroups at the level of the individ-
ual, while having access to repeated measures per individual in both target and descriptive
space. We are not the first to consider time-varying target attributes. For instance, [170]
analyze blood glucose fluctuations and [26] discover funding applications with deviating
temporal sub processes. However, in descriptive space, these authors use attributes that
are measured at the same level as the individual; their flattening approach can be catego-
rized as a transformation to a wide flat-table data format. Alternatively, [124] transformed
their data into a long, stacked flat-table format where each row contains a transition rather
than an entire sequence. To this end, [124] had to change their notion of an individual. Un-
der the hood, some form of propositionalization [116] takes place in [26, 124, 170], trans-
forming hierarchical data with one-to-many relations into a single-table representation
where each individual can be described with one term.

Relational subgroup discovery (RSD) [211] uses a proportionalization-based approach that
accepts feature language declarations similar to those used in Progol [142]. Our proposed
method is best described as a simple aggregation approach to feature construction [112].
We do not apply automated feature construction methods; these typically assume that
columns of the dataset have a coherent semantic meaning, which our data does not (cf.
Footnote 1). We show that with domain-specific aggregation functions, subgroup inter-
pretability blossoms.



Exceptional Learning Behavior in Descriptive and Target Space

8

127

8.5 Our proposed flattening approach
An aggregated descriptor is a descriptive attribute constructed out of one or more original
descriptors, where the original descriptors are defined as in Section 8.3 and may or may
not contain repeated measures per individual. The goal is to describe each individual
with one tuple of attribute-values as in Equation (8.1), rather than a tuple of tuples as in
Equation (8.2). This allows defining descriptions as conjunctions of selection conditions
over the aggregated descriptors.

Denoting an original descriptor with a j , we construct an aggregated descriptor ãh by ap-
plying a function ξ : R∗ → R1 such that per individual, the number of observed values on
attribute ãh is 1. A function ξ may be applied to one or more time-varying descriptors,
possibly in combination with an invariant descriptor.

Definition 8.1 (Aggregated descriptor). Given one or more descriptors a∗ ⊆ {a1, a2, ..., ak },
an aggregated descriptor ãh is an attribute constructed by applying a function ξ : R∗ →
R1 such that per individual, the number of observed values on attribute ãh is 1, i.e.: ãh =
ξ(a∗) with a∗ ⊆ {a1, a2, ..., ak }.

Aggregated descriptors may arise from a function such as a summation or average, they
may be non-linear (conditional) functions of one or more original descriptors, and/or they
could be parameter estimates of a statistical model. Section 8.5.1 provides examples of all
of these for the FUNA study.

The aggregated descriptors induce a tweak to the definition of a subgroup:

Definition 8.2 (Subgroup). A subgroup corresponding to description D is the bag of records
GD ⊆Ω that D covers:

GD = {r i ∈Ω|D(ã1, ã2, ..., ãs ) = 1}. (8.5)

The descriptive domain Ã is the collective domain of all aggregated descriptors ã1, . . . , ãs

and the time-invariant descriptors a† = {a j ∈ {a1, . . . , ak }|t j = 1}.

8.5.1 Domain-specific aggregations functions
Definition 8.1 allows for many variations. In the context of FUNA, a simple example is
a function ξmax that counts the number of answered items per task. For instance, ãi

1 =
ξmax(ai

NC) = t i
NC is the number of NC items answered by individual i , where aNC is the

item-indicator of task NC. We may want to know how many items individual i answered
correctly: ãi

2 = ξsum(ai
3) = ∑

t ai
3t , where a3 is a binary attribute as in Table 8.1. We could

subsequently measure the proportion of correctly answered NC items as follows: ãi
3 =

ξmax(ai
NC)/ξsum(ai

3).

Other aggregation functions that are interesting from a domain perspective are the mean
and median response time of the correctly answered items. We write ãi

4 = ξmeanTC =
(ξsum(ai

3))−1 ·∑t∈{1,...,t4} s.t. ai
3t=1 ai

4t . For ξmedianTC we would do something similar but take

the median rather than the mean.

In the domain of educational learning, the Inverse Efficiency Score (IES) [71] is a measure
that combines both the median response time and the accuracy (proportion of correctly
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Table 8.2: An overview of the aggregation functions used in FUNA.

Tasks Name Explanation
NC,SA,SS,CA MaxItem Number of answered items
NC,SA,SS,CA SumAnsC Number of correctly answered items
NC,SA,SS,CA PropAnsC Proportion of correctly answered items
NC,SA,SS,CA MeanTC Mean response time of correctly an-

swered items
NC,SA,SS,CA MedTC Median response time of correctly an-

swered items
NC,SA,SS,CA IES Inverse Efficiency Score
NC IcNumD Intercept of the response time regressed

on the distance between the two num-
bers of every item

NC SlNumD Slope of the response time regressed on
the distance between the two numbers
of every item

NC IcNumR Intercept of the response time regressed
on the ratio between the distance and
the largest of the two numbers of every
item

NC SlNumR Slope of the response time regressed on
the ratio between the distance and the
largest of the two numbers of every item

answered items). The IES allows researchers to identify children with high response times,
or a low proportion of correctly answered items, since the IES score is high in both cases.
For an individual:

ãi
6 = ξIES(ai

NC, ai
3, ai

4) = ξMedianT(ai
4)

ξPropAnsC(ai
NC, ai

3)
= 1/t i

4

∑
t ai

4t

t i
NC/

∑
t ai

3t

. (8.6)

For the Number Comparison (NC) task, it is interesting to analyze the numerical distance
effect [83]. When tasked with saying which of two numbers is greater, this task is easier to
perform when the numbers are far apart (NumD). If numbers have the same distance, the
task is hypothesized [157] to be easier if the largest number is smaller. This is called the
Number Ratio (NumR). We regress the response time of the NC items on the NumD (and
once more for NumR), and evaluate the intercept (Ic) and Slope (Sl) of these models. Thus,
we first create a time-variant descriptor aNumD = |aNCL −aNCR| (where aNCL and aNCR are
the numbers shown on the left and right in each NC item) and then fit a linear regression
model per individual i : ai

4 = f (ai
NumD, w i

0, w i
1). Parameter estimates w i

0 and w i
1 are the

intercept and slope of the regression model, stored as aggregated descriptors ãi
7 = w i

0 and
ãi

8 = w i
1. We take the same approach for NumR.

An overview of these aggregated descriptors is given in Table 8.2.
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8.6 Our proposed target model
We seek subgroups of children with atypical dot enumeration curves. We use the seg-
mented linear regression model as a target model (cf. Section 8.3.1) with response time ℓ2

as output (y) and set size ℓ1 as input (xh) (cf. Table 8.1). We are interested in finding any
kind of deviation from the typical DE curve; in a typical DE curve the subitizing slope is
close to zero, the subitizing range is somewhere between 3 and 4, and the counting slope
is relatively steep.

Following [188] and [170], we assume that the parameters of a linear model fitted on the
subgroup will likely describe the subgroup better than the parameters estimated on the
entire dataset. Then, in the presence of a subgroup, the log likelihood of dataset Ω will
increase if the parameters of the subgroup are separately estimated. For any subgroup SG
and its complement SGC ,

ln p(SG|θSG )+ ln p(SGC |θΩ) > ln p(SG|θΩ)+ ln p(SGC |θΩ),

where ln p(SG|θSG ) is the log likelihood of the subgroup for a segmented linear regres-
sion model estimated on the SG with θSG = (αSG ,βSG ,ψSG ). We expect this term to be
larger than the log likelihood of the subgroup for a segmented linear regression model
estimated on the entire dataset Ω: ln p(SG|θSG ) > ln p(SG|θΩ). Next, we use the char-
acteristic of linear regression that maximizing the log likelihood is similar as minimizing
the sum-of-squares error function (SSR) (see Section 8.3.1, and [173, Section 1]) and aim
to find subgroups where ln p(SG|θSG ) > ln p(SG|θΩ) holds. Hence, we formulate our first
QM as follows:

ϕssr = 1

ϕef
·− A

N SG

A = SSR(ℓ2, g (ℓ1,θSG )) =
nSG∑
i=1

t i
ℓ1∑

t=1

(
ℓi

2t − α̂SGℓi
1t − β̂SG (ℓi

1t − ψ̂SG )+
)2

, (8.7)

where N SG = ∑nSG

i=1 t i
ℓ1

is the number of observations in the subgroup in target space and
ϕef is the entropy function [54] to discourage tiny subgroups. We take the SSR of ℓ2 with
respect to g (ℓ1,θSG ), which is defined in Equation (8.4). If the sum-of-squared error de-
creases, ϕssr increases.

Although both the regression parameters and precision depend on the sum-of-squares,
they are statistically independent. This means that we could find subgroups with a small
error where ln p(SG|θSG ) > ln p(SG|θΩ) does not hold; the log likelihood of the subgroup
may be large, but it may not be larger than the log likelihood of the global model, for
instance when the regression parameters θSG do not differ much from θΩ. Therefore, we
propose a QM that rewards not only small values of SSR for the subgroup, but also values
of SSR for the subgroup that are smaller than the SSR of the subgroup evaluated on the
global model:

ϕssrb =ϕef ·
A(B − A)

N SG
, (8.8)

where A is as in Equation (8.7) and B is similar but with θSG replaced by θΩ.
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8.7 Experiments on real-world data
We perform two experiments.2 First, we randomly sample 5% of the children and experi-
ment with both QMs ϕssr and ϕssrb. We perform beam search [54, Algorithm 1] with b = 4,
w = 20, and q = 10. Especially when working with domain-specific data, we aim for our
resulting subgroup set to be a good balance between interpretability, variety, and quality.
To further understand how a weighted coverage scheme (WCS) [201] can contribute to
finding such a balanced subgroup set, and what its relation is to the search depth d , we
vary d ∈ {3,5} and the multiplicative weighting parameter of the WCS γ ∈ {0.1,0.5,0.9}. We
evaluate our results by inspecting the average quality of the subgroup set, the average size
of the subgroups, the number of subgroups (out of q = 10) that validation with the Dis-
tribution of False Discoveries (DFD) [55] cannot distinguish from false discoveries over
m = 50, the average run time, and two measures of subgroup set redundancy: Joint En-
tropy (JE) [201] and median Jaccard similarity (JSIM) [153] (see [173, Section 2] for precise
definitions). We use the pwlf Python library to fit our segmented linear regression models
[92].

Second, based on our findings in the first experiment, we choose the most appropriate
QM, value for d and value for γ, and repeat the experiment with the full FUNA dataset
(n = 15486). Beam search width w = 20, b = 4 and q = 20. All these children have at least
5% of their answers correct in each descriptor task (NC, SA, SS, CA) and the children have
at least one observed answer for every possible set size in the DE task. The maximum
number of observed items in the DE task is 18 per child.

Extra experiments on Curran dataset

We perform an additional set of experiments on a fully public dataset and discover sub-
groups of children with exceptional relations between age and reading skills. Since our
quality measures generalize to linear regression problems other than segmented linear
regression, we perform these extra experiments with polynomial regression. More infor-
mation and a short discussion of the results can be found in [173, Section 3].

8.7.1 Subgroup set redundancy and weighted coverage schemes
Figure 8.3 presents the standardized, average quality of a subgroup set (q = 10) for various
values of d , γ, and both QMs. In essence, the results are as expected: the quality increases
with the description length d and the weight parameter γ increases, and the impact of
varying γ is larger for smaller d (see Figure 8.3; absolute difference between the smallest
and largest quality for varying γ is larger for d = 3 than for d = 5).

Table 8.3 reports the other evaluation metrics: the average subgroup size decreases when
either d or γ increase, and in general, the subgroup set redundancy is larger when d de-
creases or γ increases (higher JE, lower JSIM). Except for 2 subgroups for ϕssrb when d = 3
and γ= 0.1, all discovered subgroups can be considered valid discoveries.

2Our experimental code, all results, and a slice of the FUNA dataset are available at https://github.com/
RianneSchouten/FUNA_EMM/.

https://github.com/RianneSchouten/FUNA_EMM/
https://github.com/RianneSchouten/FUNA_EMM/
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Figure 8.3: The relation between the average quality of a subgroup set
(q = 10, standardized per QM), search depth d , and WCS parameter γ,
for both QMs.

For ϕssr, given d , the average subgroup size, JE, and JSIM are comparable when varying
values of γ. It seems that there is barely an effect of the WCS. When d = 5, the average
quality is lower for γ = 0.9 then for γ = 0.5, and when d = 3, the average quality is lower
for γ= 0.5 than for γ= 0.1. These results are unexpected since a decreasing γ is supposed
to increase the variety of the subgroup set at the cost of average quality. Inspecting the
individual descriptions and qualities, we find that for ϕssr the variety in the subgroup set
is larger when γ= 0.9 than when γ ∈ {0.1,0.5}. Most likely, the reason is the use of a square
when calculating the quality. Even when we use a strict WCS, the same subgroup recurs,
since the weighted quality of the other subgroups does not beat the non-weighted quality
of the recurring subgroup. When the WCS is very strict (small γ), at lower search levels,
important precursors may be removed and not available for refinement at higher levels.
As a consequence, a subgroup set with a strict WCS could have fewer candidate subgroups,
which in the end creates a relatively redundant subgroup set. It is unfortunate that JE and
JSIM do not fully reveal these conclusions.

With ϕssrb the subgroup sets are less redundant than with ϕssr, especially for small values
of γ. Clearly, JSIM increases and JE decreases when γ increases. Subgroups found with
d = 5 are slightly smaller than for d = 3.

8.7.2 Exceptional learning behavior
We perform the experiment on the entire dataset with ϕssrb, since this QM turns out to
be stable and produces small and interesting subgroups. We choose γ = 0.5 to balance
between high quality and low redundancy. We choose d = 3 since Table 8.3 shows that
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Table 8.3: Experimental results for both QMs, d ∈ {3,5}, γ ∈ {0.1,0.5,0.9}.

QM d γ Prop DFD JE JSIM Time

ϕssr

3
0.1 0.20 0 1.36 0.87 1.63
0.5 0.16 0 1.68 0.75 1.61
0.9 0.16 0 1.55 0.73 1.62

5
0.1 0.12 0 0.91 0.88 2.97
0.5 0.13 0 0.79 0.91 2.95
0.9 0.13 0 0.77 0.90 2.93

ϕssrb

3
0.1 0.22 2 4.35 0.18 1.60
0.5 0.08 0 2.35 0.31 1.56
0.9 0.05 0 1.14 0.44 1.35

5
0.1 0.06 0 2.19 0.29 2.17
0.5 0.06 0 2.01 0.31 2.13
0.9 0.05 0 1.08 0.46 1.86

these results do not differ much from d = 5, and a description with fewer literals is easier
to interpret for domain experts. Descriptions and target models of all top-20 exceptional
subgroups can be found in [173, Section 2]; we report a smaller selection in Table 8.4 and
Figure 8.4.

Although we allow for descriptions to have d = 3 literals, strong performance is found in
single-attribute subgroups. There is a variety in used descriptors (multiple aggregation
functions, multiple tasks), subgroup size, and target models. Compared to the segmented
linear regression parameters of the global model, 15 out of 20 exceptional subgroups have
a subitizing range lower than average; the other 5 have a higher subitizing range.

Subgroups 1 and 2 have very similar subitizing curves: children in these subgroups are
particularly slow to subitize, and these groups are the only ones that have an intercept
over 2 seconds. The subgroups contain children with slow NC response times (either ex-
pressed in terms of IES or mean response time) and both are slow to solve addition prob-
lems (based on SA and CA tasks). The groups are small, and probably most typical of
dyscalculia, or at the very least groups that are made up of children who are likely to have
maths learning difficulties. The dyscalculia prevalence estimate is 3-6% [181], which is in
accordance with the subgroup sizes 0.05 and 0.06 for subgroups 1 and 2 respectively.

Subgroup 5 is a more general version of subgroup 1; it covers 50% of the children and
contains only the first literal. The subitizing curve shows the same trend as the one of
subgroup 1, but less extreme: the subitizing range is smaller than the global model, but
not as small as in subgroup 1, and intercept, subitizing slope, and counting slope are larger
than in the global model, but not as large as in subgroup 1. Domain experts suspect that
this subgroup may reflect maths learning difficulties as well.

Subgroup 6 is the inverse of subgroup 5. This is not only clear from the description in Ta-
ble 8.4, but from the regression model in Figure 8.4 as well; the subitizing range is higher,
and the intercept and subitizing slope are lower than in the global model. Subgroups 13,
15, 18, and 19 are the other four subgroups that have subitizing ranges above the aver-
age, and characteristically have subitizing intercepts (baseline response time or speed of
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Figure 8.4: Estimated segmented linear regression models of subgroups 1, 5, 6, 7, 10, 17 and 18 discovered
with ϕssrb. Target model equations can be found in Table 8.4.

Table 8.4: Subgroup proportion, description and estimated target models for subgroups 1, 5, 6, 7, 10,
17 and 18, discovered with ϕssrb. The global target model is 1407+88ℓ1 +463(ℓ1 −3.3)+.

SG Prop Description Target model

1 0.05
NC-IES:(0.04,1.0) ∧ NC-MeanTC:(0.23,0.74)

2179+124ℓ1 +764(ℓ1 −2.9)+∧ SA-MeanTC:(0.71,1.0)
5 0.50 NC-IES:(0.03,1.0) 1541+106ℓ1 +624(ℓ1 −3.2)+
6 0.50 NC-IES:(0,0.03) 1091+ 70ℓ1 +475(ℓ1 −3.5)+
7 0.12 NC-MeanTC:(0.16,1.0) ∧ SS-SumAnsC:(0.0,0.32) 1938+ 70ℓ1 +712(ℓ1 −2.8)+

10 0.38 SA-MeanTC:(0.71,1.0) 1544+108ℓ1 +641(ℓ1 −3.2)+
17 0.30 grade = 3 1561+106ℓ1 +634(ℓ1 −3.2)+
18 0.27 SA-MaxItem:(0.6,1.0) 1064+ 62ℓ1 +441(ℓ1 −3.6)+

processing) that are 300-350ms faster than the average and at least 500ms faster than any
other group in the table. They also have shallower (faster) counting slopes by 150-200ms
than most other groups.

Subgroups 18 and 19 have target models that are very similar to the one of subgroup 6,
even though the descriptions of these subgroups differ. Subgroup 6 expresses the sub-
group in terms of NC-IES while subgroup 18 does this in terms of an arithmetic addition
task (SA). A similar things occurs for subgroups 5 and 10: the target models are similar
while the descriptions use aggregated descriptors from different tasks. These findings sug-
gests relations between number processing skills and arithmetic skills. They additionally
show that it may be possible to obtain diagnostic information by focusing on fewer tasks;
it may be possible to know the results on a particular task given the performance on an-
other task. This is a promising result that provides opportunity for further development of
assessment tools and intervention programs.



8

134 Conclusion

The only subgroup that does not use an aggregated descriptor is subgroup 17, which se-
lects children in the third grade. Interestingly, the estimated target model of subgroup
17 is similar as the ones for subgroups 5 and 10; similar to the global model, expect for a
larger counting slope. Compared to the other children in the FUNA dataset, the children
in subgroup 17 are younger and hence, slower for all tasks, including the NC (subgroup 5)
and SA (subgroup 10) tasks.

8.8 Conclusion
The FUnctional Numerical Assessment (FUNA) project [155] develops digital assessment
tools for detecting dyscalculia and dyslexia in young children by evaluating numerical pro-
cessing competences such as the ability to enumerate small sets of dots and to compare
the relative magnitudes between sets. These numerical processing competences are di-
agnostic markers of children’s emerging math abilities [71]. In this chapter, we particu-
larly focus on the characteristics that define children’s enumeration ability, such as the
threshold at which children can determine the correct number of dots at a glance, known
as subitizing range, and other parameters of subitizing patterns such as the initial reac-
tion time and counting slope. Common algorithms used for estimating subitizing range
can produce inconsistent results [120] especially among individuals with dot enumeration
curves that deviate from the typical curve.

Therefore, we develop an EMM model class for segmented linear regression to discover
subgroups of children whose subitizing curves exhibit atypical patterns. It could be ar-
gued that choosing segmented linear regression as a model class is a drawback since the
observations are not independently distributed (i.e., a model is estimated on nSG indepen-
dent children, who all contribute the measurements of several items, resulting in a total
number of N SG observations). Despite of that, we follow this approach since segmented
linear regression fits the neuro-cognitive concept of subitizing very well. Furthermore, the
assumption of independent observations is required for most of the other algorithms as
well; segmented linear regression has the least baggage built into it.

Our findings confirm the belief that numerical processing competences strongly correlate
with arithmetic skills. We find several exceptional subgroups that confirm existing knowl-
edge, including subgroups that are considered typical of dyscalculia; these children have
slow NC response times and are slow to solve addition problems. We find subgroups with
similar subitizing patterns but different descriptions. This indicates the strong relation
between subitizing, counting, and arithmetic ability, and additionally provides promis-
ing opportunities for further development of assessment tools and intervention programs
that focus on fewer tasks or a reduced number of items per task: it may become possible
to know the results on a particular task given a child’s performance on another task.

Both quality measures in this chapter assume that the overall population and subgroups
are best modeled with the canonical subitizing range model: a piecewise linear regres-
sion model with precisely one break point. However, it is entirely possible that coherent
subgroups of children do not follow this regimen: some groups may display no substan-
tial break point; behavior of others might be best modeled by multiple break points. The
piecewise linear regression model class for EMM can accommodate this sort of behavior,
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but it requires development of a new QM: log likelihoods will necessarily increase when
more break points are available to the model, so some penalty for model complexity must
be involved.
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Conclusions

In the previous chapters of this dissertation, we presented new insights that contribute to
answering the research question introduced in Chapter 1: “How to discover exceptional
subgroups in hierarchical data?” This chapter summarizes the main contributions of our
work by highlighting where in our unified terminology the respective chapters of this disser-
tation fit in. We furthermore give an overview of domain-specific contributions and discuss
directions for future research.
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9.1 Summary of contributions
In this dissertation, we analyze variation in human behavior using a Local Pattern Mining
(LPM) framework called Exceptional Model Mining (EMM) [54, 121]. EMM aims to extract
practically relevant patterns from data. However, real-world data often has a hierarchical
structure where the observations on entities of one entity type are nested in the entities
of another entity type. The concept stems from the idea that individual persons are influ-
enced by the social groups or contexts to which they belong (and vice versa) [84, 125, 187].
The individuals and social groups are conceptualized as a hierarchical system of individ-
uals nested in groups, and groups nested in larger groups. Such a hierarchical system can
be generalized to the scenario where information is repeatedly measured per individual,
resulting in data where observations are nested in individuals [84, 125, 187].

In hierarchical data, a shared context introduces a correlation structure between individu-
als belonging to that context, or between measurements belonging to the same individual.
Then, a common data mining assumption that observations are independent is violated.
Consequently, hierarchical data structures pose problems for the framework of EMM re-
garding whether and how hierarchical data can be formatted as a flat table, how selection
conditions can be used to cover a group of individuals and how we can assess exception-
ality. Therefore, the main research question in this dissertation is:

How to discover exceptional subgroups in hierarchical data?

To answer this question, in Chapter 3 we first formally defined hierarchical data as a col-
lection of measurements taken from various types of entities, where the measurements
on entities of one entity type are nested in the entities of another entity type. We then pro-
posed a unified terminology that classifies existing EMM methodologies based on whether
descriptors and targets reside at lower, the same or higher hierarchical levels than the sub-
group level, the hierarchical level of the entity type for which subgroups should be formed.

The work presented in this dissertation significantly contributes to the body of scientific
literature on EMM for hierarchical data. In Table 9.1, we reproduce the unified terminol-
ogy presented in Table 3.1 and additionally highlight in blue where the respective chapters
of this dissertation fit in. In sum, our work further populates Box D (sequential data in tar-
get space) and is one of the first to consider hierarchical data at a higher level than the
subgroup level (Box F) and to consider hierarchical data with nested observations in both
descriptive and target space (Box A). More specifically, the contributions of this disserta-
tion are as follows:

1. We developed new EMM methodology for sequential data in target space (entity
type time nested in individuals). We answered EMM-RQs A1, A2 and A3 by utiliz-
ing Markov chains of varying order and by developing three new quality measures
based on information-theoretic scoring functions. These quality measures allow for
the number of parameters to differ between subgroup and population. They also
naturally handle varying sequence-lengths (Chapters 4 and 5).

Our proposed method further populates Box D in Table 9.1 ([170]). In contrast to
[124], who introduced an EMM model class for 1st order Markov chains and worked
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Table 9.1: Our proposed unified terminology for EMM for hierarchical data from Table 3.1.
Descriptors and targets can be measured at lower, the same or higher hierarchical levels than
the subgroup level. Here, we highlight the contributions of this dissertation in blue.

Targets
lower same higher
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rs
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er A [88, 93, 129] [174] B [66, 77, 103, 114, 209, 211] C
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D [42, 72, 156, 204] E [17, 51, 54, 56, 109, 121] F [158] [171]
[26, 143] [170]
D∗ [9, 20, 21, 47, 98] E∗

1 [10, 50, 124] F∗ [19]
D∗ [95] E∗

2 [29, 85, 86, 106]

h
ig

h
er G H [118, 119, 140] I

G∗ [185] [16, 147, 202, 203]

around the hierarchical data structure by adopting a long flat-table data format (Box
E*), we let the sequential structure in target space intact.

Within Box D, our work is close to [26], who analyze Dynamic Bayesian Networks
(DBNs) in target space and define a mismatch score between the subgroup and its
complement. Instead, we compared the subgroup to the entire dataset because this
is conceptually more relevant and computationally more efficient.

2. We developed EMM for Repeated Cross-Sectional data (EMM-RCS) (entity type in-
dividual nested in measurement occasions). Our proposed methodology answers
EMM-RQs B1, B2 and B3 by handling practical RCS data problems, including un-
even spacing of measurements over time, fluctuating sample sizes and missing data.
We developed a generic quality measure that provably discovers exceptional trend
behavior by balancing measures of the distance to the population model, the uncer-
tainty of those measures and the subgroup size in determining the exceptionality of
a subgroup (Chapters 6 and 7).

We are the first to propose a model class (exceptional trend behavior) that resides at
a higher hierarchical level than the subgroup level (individuals). Consequently, our
work is one of the first to populate Box F in Table 9.1 ([171]).

Two other EMM-related approaches were positioned in Box F, but those methods
consider a scenario where the target attributes form a hierarchy [19, 158]. Then,
data values at higher hierarchical levels can be calculated directly from the lower
level measurements; there is no uncertainty of measurements in hierarchical levels
other than those at the lowest level. In contrast, throughout this dissertation, we
consider hierarchical data where entity types form a hierarchy. Then, each entity
type has its own associated set of attributes and measurement uncertainty occurs
at every hierarchical level. This effect is particularly prevalent in RCS data where
varying measurement occasions create that data distributions change over time.
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3. We developed an EMM model class for nested data in target space and simultane-
ously solved problems regarding handling nested data in descriptive space (items
nested in digital assessment tasks).

Specifically, we answered EMM-RQ C3 by developing a piecewise linear regression
model class with various quality measures discovering subgroups of children whose
subitizing curves exhibit atypical patterns. Furthermore, we answered EMM-RQ C1
and C2 by 1) investigating existing propositionalization approaches (most of them
are in Box B) and 2) proposing the concept of aggregated descriptors as a generic
approach to flattening nested data in descriptive space (Chapter 8).

We are one of the first to develop an EMM methodology for hierarchical data with
nested observations in both descriptive and target space. Consequently, our work is
one of the first to populate Box A in Table 9.1 ([174]).

Within Box A, our approach significantly differs from [93], who cut time series into
slices and construct features per slice. Then, the subgroup level changes from in-
dependently sampled time series to slices. In contrast, our features describe entire
sequences. Furthermore, [88, 129] analyze sequences of items in descriptive space
and extract two types of patterns: sets of items and subsequences. They focus on
understanding (the order of) items per individual. In contrast, our individuals are
described by multiple sequences (of binary, numerical and categorical type) and
the interest is in extracting groups of individuals that share common traits. In target
space, [88, 129] average top-N recommendations into one numerical value per user
(SD) whereas we develop a target model that contains all nested values (EMM).

Throughout this dissertation, we demonstrated internal validity of our proposed meth-
ods by means of synthetic data studies and experiments on public, real-world data. In
addition, we performed experiments to evaluate certain properties of our search strategy:
two new refinement strategies for handling incomplete descriptors (Chapter 6), the ef-
fectiveness of (combining) several solutions for reducing subgroup set redundancy and
validating the discovered subgroups (Chapter 7) and the interaction effect of applying a
Weighted Coverage Scheme (WCS) [117, 201] and beam search parameter d (Chapter 8).

We uncover the effect that a more strict weighting regime (smaller value for γ in Equation
2.3) yields a more diverse subgroup set. In other words, it may occur that at early search
levels important precursors are pushed out of the beam, rendering them unavailable for
refinement at subsequent levels. A similar effect occurred when handling incomplete de-
scriptors: increasing the space of candidate subgroup descriptions reduced the quality of
the discovered subgroups because important precursors were removed.

9.2 Domain-specific contributions
Moreover, we demonstrated external validity of our proposed methodologies by enabling
domain experts to confirm existing hypotheses and to spawn interest for new theories. We
show that our proposed EMM methodologies are hypothesis-generating sources that, due
to their exploratory nature, work as a starting point in further understanding variation in
human behavior.
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Diabetes care

Domain experts and clinicians hypothesized the use of iCGM-derived parameters for es-
tablishing individualized glycemic treatment [38, 46] (D-RQ Diabetes care). In this dis-
sertation, we successfully deployed our proposed methodology and provided supporting
evidence for this hypothesis. Specifically, we discover a variety of subgroups with excep-
tional blood glucose fluctuations: some subgroups transition towards higher blood glu-
cose values; others towards similar or lower values. For instance, patients with high HbA1c

values are more likely to have a Time Above Range (TAR) that is too high. If those patients
are also older than average, they are additionally less likely to have a good Time In Range
(TIR). In contrast, patients with low HbA1c values are likely to transition away from high
blood glucose levels. Domain experts confirmed our findings (Chapter 5).

Public health

We contributed to answering D-RQ Public health by successfully deploying EMM-RCS
to discover (combinations of) social group memberships that display exceptional devia-
tions in the trend in adolescent alcohol use in the Netherlands. Using our generic qual-
ity measure, we discovered three types of exceptional trend deviations. Domain experts
interpreted our findings and concluded that they confirm existing knowledge that age,
educational level, and migration background are important descriptors of monthly alco-
hol use and that an interplay effect exists with life satisfaction, urbanization degree, and
truancy. Furthermore, our findings spawned two hypotheses for further sociological re-
search and provided dis-confirming evidence to a sociological hypothesis that aligns with
existing studies (Chapter 7).

Learning analytics

We contributed to the understanding of individual variation in learning behavior. Specif-
ically, we contributed to answering D-RQ Learning analytics by deploying our proposed
EMM model class for segmented linear regression and confirmed the belief that numer-
ical processing competences strongly correlate with arithmetic skills. Together with do-
main experts, we discovered several exceptional subgroups, including subgroups that are
considered typical of dyscalculia; these children have slow Number Comparison (NC) re-
sponse times and take longer to solve addition problems. Furthermore, we discovered
subgroups with similar subitizing patterns but different descriptions. According to do-
main experts, these findings reflect the strong relation between subitizing, counting, and
arithmetic ability. In addition, our findings reveal promising opportunities for further de-
velopment of assessment tools and intervention programs that focus on fewer tasks or
a reduced number of items per task. It may become possible to predict the results on a
particular task given a child’s performance on another task (Chapter 8).

9.3 Future work
During our work on the contributions in this dissertation, we identified many valuable
research directions. In Section 3.6, we gave a short overview of research gaps regarding
EMM for hierarchical data. There, we suggested to increasingly utilize ontologies to tra-
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verse the search lattice efficiently [118], to consider target models specifically designed for
analyzing hierarchical data, such as location-scale models [75] and to focus on improving
the process of aggregating lower-level measurements in descriptive space [198].

Furthermore, our unified terminology in Table 9.1 (cf. Table 3.1) reveals that there exist
only few EMM methodologies for data with attributes that reside at a higher hierarchi-
cal level than the subgroup level (Boxes C, F, G, and I). Especially Boxes A, C, G and I are
sparsely populated or even completely empty. In these corner boxes, there is space for
further developing the EMM framework towards hierarchical data where attributes reside
at a non-subgroup level, in descriptive and in target space.

Remark that hierarchical data is a form of non-IID data. Therefore, our classification cov-
ers all relevant work on SD and EMM for non-IID data. Yet, so far, most existing work on
EMM for non-IID data considers hierarchical data. EMM instances developed for non-IID
data that cannot be considered hierarchical according to Definition 3.2, are assigned to
boxes with an asterisk. For instance, exceptional subgraph mining is positioned in Box
D*, since we can consider attributed vertices [9, 20, 21, 47] or attributed edges [98] to re-
side at a lower hierarchical level than the subgraph (the subgroup level). As a next step, it
would be interesting to explore whether EMM methodology could deal with graphs that
contain both attributed vertices and attributed edges, and to investigate graph data that
contains observations on entities of multiple entity types. Other examples of non-IID data
worth exploring with EMM are multi-relational databases with many-to-many relation-
ships [209, 210], multivariate time-series data [85, 93] and unstructured data [6].

In addition, we observe a trend that domain experts increasingly use data collection meth-
ods other than the traditional research designs. Consequently, we expect a need for de-
veloping the EMM framework towards data with multiple modalities. For instance, in
DIALECT-2 [67], besides measuring blood glucose values with an iCGM device, sensors
collect repeated measurements of heart rate and step count, questionnaires give a subjec-
tive indication of patients’ health behavior and food diaries provide information on calorie
intake [67]. It would be valuable to develop EMM methodologies that take into account all
this information. An example of an EMM instance developed for multi-modal data is [50],
who discover exceptional spatio-temporal behavior.

Given the societal impact of the patterns discovered with our developed methodologies,
we believe EMM has great potential to be integrated into real-world applications and soft-
ware. An example of other recent work that demonstrates this potential future direction is
[88], who first, develop an SD model class for extracting explanations of top-N recommen-
dations made by a state-of-the-art recommender system and second, construct a global
model, based on the set of explanations generated for n users, that acts as a recommender
system itself. Alternatively, at a smaller scale, we see potential in deploying EMM at an
individual level, solely using person-specific data. For instance, an app with an EMM im-
plementation could have a signaling function by discovering exceptional deviations from
an individual’s typical behavior pattern.

To realize the implementation of EMM instances into real-world applications, the EMM
framework should consider moving towards extracting patterns from data streams rather
than fixed-size datasets, and towards discovering sequential patterns (almost) in real time.
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Such advancements include developing EMM methodologies for understanding model
change [7, 144] and concept drift [81]. Remark that non-stationary data streams where
variable distributions change over time are closely related to Repeated Cross-Sectional
data where independent observations are nested in measurement occasions. Consequently,
the work presented in this dissertation could serve as a starting point in further exploring
the possibilities of implementing EMM methodologies in real-world applications.
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[203] Vavpetič, A., Podpečan, V., and Lavrač, N. Semantic subgroup explanations. Jour-
nal of Intelligent Information Systems 42 (2014), 233–254.

[204] Verhaegh, R. F. A., Kiezebrink, J. J. E., Nusteling, F., Rio, A. W. A., Bendicsek, M. B.,
Duivesteijn, W., and Schouten, R. M. A clustering-inspired quality measure for
exceptional preferences mining – design choices and consequences. In Proc. DS
(2022), pp. 429–444.



160 References

[205] Webb, G. I. Discovering significant patterns. Machine learning 68 (2007), 1–33.

[206] Webb, G. I., Butler, S., and Newlands, D. On detecting differences between groups.
In Proc. KDD (2003), pp. 256–265.

[207] Wilks, D. S. Interannual variability and extreme-value characteristics of several
stochastic daily precipitation models. Agricultural and Forest Meteorology 93, 3
(1999), 153–169.

[208] World Health Organization. Use of glycated haemoglobin (HbA1c) in diagnosis of
diabetes mellitus: Abbreviated report of a WHO consultation. No. WHO/NMH/CH-
P/CPM/11.1, WHO, 2011.

[209] Wrobel, S. An algorithm for multi-relational discovery of subgroups. In Proc. PKDD
(1997), pp. 78–87.

[210] Wrobel, S. Inductive logic programming for knowledge discovery in databases. In
Relational data mining. Springer, 2001, pp. 74–101.
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Summary

In this dissertation, we analyze variation in human behavior using a Local Pattern Min-
ing (LPM) framework called Exceptional Model Mining (EMM). EMM aims to discover
subgroups in a population that somehow behave exceptionally. These subgroups are de-
scribed using an interpretable language of conjunctions of attribute-value pairs.

We observe that employing EMM in real-world use cases is challenging, since data is of-
ten hierarchically structured. Although formal definitions in EMM are agnostic about the
origin of the data and whether or not one observation is independent from the next one,
most existing EMM methodologies assume data to be in the conventional data mining
representation where each individual can be described with one tuple of attribute-values.
In contrast, in hierarchical data, attributes may contain multiple values per individual and
individuals may be described by tuples of tuples. Then, the EMM framework runs into
problems with the selection and description of candidate subgroups and with assessing
exceptionality. Therefore, the main research question in this dissertation is:

How to discover exceptional subgroups in hierarchical data?

To answer this question, we first formally define hierarchical data as a collection of mea-
surements taken from various types of entities, where the measurements of one entity
type are nested in the entities of another entity type. Second, we propose a unified ter-
minology that classifies existing EMM methodologies based on whether descriptors and
targets reside at lower, the same or higher hierarchical levels than the subgroup level, the
hierarchical level of the entity type for which subgroups should be formed.

The work presented in this dissertation significantly contributes to the body of scientific
literature on EMM for hierarchical data. Our work further populates rather sparse cate-
gories in our unified terminology. Specifically, we develop new EMM methodologies for
three types of hierarchical data:

1. we analyze sequential data in target space by employing Markov chains of varying
order and develop three new quality measures based on information-theoretic scor-
ing functions,

2. we develop EMM-RCS, an EMM instance for Repeated Cross-Sectional data that
deals with practical RCS data problems, including uneven spacing of measurements
over time, fluctuating sample sizes and missing data,

3. we consider hierarchal data with nested observations in both descriptive and target
space and propose the concept of aggregated descriptors as a generic approach to
flattening nested data in descriptive space.
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In addition, throughout this dissertation, we demonstrate external validity of our pro-
posed EMM methodologies by enabling domain experts to confirm existing hypotheses
and to spawn interest for new theories. In diabetes care, domain experts confirm that
our findings support the hypothesis that monitoring blood glucose values using an iCGM
device is a valuable new way to monitor glycemic treatment for patients with diabetes
type 2. In public health, domain experts interpreted our findings and conclude that they
confirm existing knowledge, spawn two hypotheses for further sociological research and
provide disconfirming evidence to a sociological hypothesis that aligns with existing stud-
ies. In learning analytics, based on our findings, domain experts discovered subgroups
of children with dyscalculia. Our findings furthermore confirm the belief that numeri-
cal processing competences strongly correlate with arithmetic skills and reveal promising
opportunities for further development of digital assessment tools.

In sum, in this dissertation, we advance the framework of Exceptional Model Mining by
proposing generic and domain-independent methodologies for discovering exceptional
subgroups in various types of hierarchical data. Given the potential societal impact of the
patterns discovered with our proposed methods, we believe integration of EMM meth-
ods into real-world applications and software is within the realm of possibility. Further
research in this direction would be valuable and the work presented in this dissertation
could very well serve as a starting point.
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ERRATUM

PhD thesis: Exceptional Model Mining for Hierarchical Data
Rianne M. Schouten, 14 January 2025

In Chapter 7, we discuss the effect of several anti-redundancy and validation techniques on the set
of discovered subgroups. Tables 7.2 - 7.4 contain the results before pruning. However, in the text,
the numbering of subgroups refers to results after pruning. Below, we present a list of corrections.

On page 113, in Figure 7.1b, the green line listed as 5 should be colored with dark purple and be
listed as 6 , in accordance with the 6 in the bottom row in Table 7.3.

On page 114, par. 2, subgroups 11 and 15 should be changed to subgroups 15 and 20.

On page 114, par. 2, subgroups 1, 4, 5 and 8 should be changed to subgroups 1, 2, 3, 4, 7 and 8.

On page 114, par. 2, subgroups 11 and 15 should be changed to subgroups 15 and 20.

On page 114, par. 3, trend groups 2 and 5 (purple and green lines) should be changed to trend groups
2 and 6 (purple and dark purple lines).

On page 115, par. 1, (subgroups 3 and 9) should be changed to (subgroups 6 and 14).

On page 115, par. 1, (subgroup 12) should be changed to (subgroup 18).

On page 115, par. 2, trend group 5 (subgroup 11) should be changed to trend group 6 (subgroup 16).

On page 115, par. 2, (subgroup 6) should be changed to (subgroup 10).

On page 115, par. 2, at least moderately urbanized should be changed to at most moderately urbanized.

On page 116, par. 2, (trend groups 2 and 5) should be changed to (trend groups 2 and 6).

On page 117, par. 2, subgroups 2, 6, 9, 10 should be changed to subgroups 2, 6, 15, 20.

On page 117, par. 2, subgroups 5, 8 should be changed to subgroups 5, 11.

On page 117, par. 5, subgroup 11 in Table 7.3 should be changed to subgroup 16 in Table 7.3.

On page 117, par. 5, subgroups 6, 7 in Table 7.4 should be changed to subgroups 6, 9 in Table 7.4.

On page 118, par. 1, subgroups 2, 9 in Table 7.4 should be changed to subgroups 2, 15 in Table 7.4.

On page 118, par. 1, subgroups 2, 7, 13 in Table 7.3 should be changed to subgroups 5, 11, 19.
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