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Abstract. Numerical processing competences such as the ability to enu-
merate small sets of dots and to compare the relative magnitudes between
sets are diagnostic markers of young children’s emerging math abilities.
In the FUnctional Numerical Assessment (FUNA) study, these abilities
are assessed using several computer-assisted tasks, among which is a Dot
Enumeration (DE) task where children determine the number of dots in
a visual array. It seems that there is a natural threshold around 3 or 4
dots: below this threshold, it is possible to determine the correct num-
ber at a glance, known as subitizing; above the threshold, children must
count the dots in some way. In this paper, we develop a piecewise linear
regression model class for Exceptional Model Mining with various qual-
ity measures discovering subgroups of children whose subitizing curves
exhibit atypical patterns. The dataset does not follow the conventional
data mining representation where each individual is described with a
tuple of attribute values. Rather, for each task, students perform mul-
tiple items, one after the other, taken from a larger set of items, and
not necessarily in the same order. Hence, we discuss a manner (tailored
to the dataset at hand) to transform this item-performance data into
the flat-table form that the typical data mining task expects. Domain
experts confirm that our experiments evidently demonstrate how chil-
dren’s subitizing performance and counting skills are related to math
abilities. Our findings provide opportunity for further development of
assessment tools and intervention programs.
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1 Introduction

Learning mathematics is hard. At the neuro-cognitive foundation of young chil-
dren’s math development are core numerical processing competences such as the
ability to enumerate small sets of dots and to compare the relative magnitudes
between sets [6]. These numerical competences are diagnostic markers of emerg-
ing math abilities from as early as preschool age [7] which make them targets
for conceptually motivated intervention programs [1].

Fig. 1. Dot enumeration response
time regressed on set size (num-
ber of dots) using segmented linear
regression with one break point

Fig. 2. An example of a dot enumeration
item for set size 4; the correctly answered
items are used in Fig. 1

We investigate characteristics that define exceptional patterns of young chil-
dren’s enumeration ability. Generally, enumeration performance reflects two dis-
tinct processes: the subitizing system where small sets (1–4 dots) are recognized
accurately and rapidly, and the counting system where larger sets are enumerated
more slowly perhaps by counting or other enumeration strategies [22]. Figure 1
gives an example; the enumeration response time of small sets is relatively flat
while the counting slope is steeper. The inflection point demarcates the subitiz-
ing range from the counting range.

Individual differences in subitizing range predict math ability [17]. An inabil-
ity to subitize is associated with dyscalculia [12]. There is value in accurately and
reliably estimating the parameters that define subitizing patterns (initial reac-
tion time, range, slope). Common algorithms used for estimating the subitizing
range can produce inconsistent results [15], especially among individuals with
dot enumeration curves that deviate from the typical curve.

We develop a piecewise linear regression model class for Exceptional Model
Mining (EMM) [4] to discover subgroups of children whose subitizing curves
exhibit atypical patterns. EMM is a local pattern mining framework seeking
coherent subgroups in a dataset that somehow behave exceptionally. We develop
various quality measures based on log likelihood that allow us to discover atypical
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subitizing patterns such as deviating initial reaction times, subitizing ranges,
counting slopes, or a combination of those.

We use data collected by the FUnctional Numerical Assessment (FUNA)
study [21]. Numerical processing competences and math abilities are assessed
using several computer-assisted tasks. Some of these tasks contain a fixed num-
ber of questions, or items; others are time-based and the number of answered
items will vary per child. Items are taken from a larger set of items, and not
necessarily answered in the same order. Consequently, the dataset does not fol-
low the conventional data mining representation where each individual can be
described with one tuple of attribute values, and where a column contains the
same semantic information for each individual.1 Hence, pre-processing is required
to allow existing algorithms to search through the space of candidate subgroups.
We discuss a manner tailored to the item-performance data at hand.

The main contributions of this paper are: 1) an EMM model class and various
quality measures for segmented linear regression; 2) a deeper understanding of
how subitizing patterns relate to other numerical processing competences and
emerging math abilities; 3) an effective pre-processing technique for handling
repeatedly measured attributes in descriptive space.

2 The FUnctional Numerical Assessment Study

The FUnctional Numerical Assessment (FUNA) study [21] is a large-scale
research program in Finland to develop digital assessment tools for detecting
dyscalculia and dyslexia. Currently, several studies are run to evaluate the valid-
ity and reliability evidence of the tasks [8]. The current version has been normed
in Finnish and Finnish-Swedish languages for grade levels 3 to 9 (9 to 15 years
old). In the FUNA-DB (Dyscalculia Battery) the children respond to six digi-
tal (CAI) tasks using a tablet or a computer: Number Comparison (NC), Dot
Matching equivalence task (DM), Single Digit Addition (SA), Single Digit Sub-
traction (SS), Combination Addition (CA) and Number Series (NS). Every task
consists of multiple questions, or items. The tasks SA, SS, CA, and NS measure
arithmetic fluency, and the items considered easier are provided earlier than more
difficult items, but the exact order is not the same between children (i.e. a quasi-
random order). In the number processing tasks (NC, DM), a set of predefined
items are presented in a fully random order. Figure 2 displays an example of a
DM item. Children compare a symbolic number (1–9) to a non-symbolic repre-
sentation of a number. The location of the dots is randomized as well. When the
symbolic and non-symbolic representations are the same, and when the children

1 Children build up experience with the type of tasks at hand while the study unfolds.
Suppose that two children perform Task T , but Child A is given this task earlier in
the procedure than Child B. Then, Child B will have built up more experience than
Child A with similar tasks, before executing Task T . A conventional data mining
representation of this data would record performance of both children on Task T
in the same column, but this belies the reality that these performances are not
measured in an equal manner.
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Table 1. Small slice of FUNA dataset. Some descriptors originate from the NC-task
(a2, a3, a4), others from the SA (a5), SS, or CA task, or from the general background
information (a1). In our EMM instance, target attributes originate from the DE task
(�1, �2). All task-based attributes contain data from multiple items, resulting in tuples
of values. The number of values per tuple may vary per child and per task.

sex NC SA DE

i a1 a2 a3 a4 a5 . . . �1 �2

1 f (4,3,1,4,. . .) (1,0,0,. . .) (1200,1150,. . .) (6,2,2,. . .) . . . (5,1,8,. . .) (1330,14. . .)

2 f (2,3,1,7,. . .) (1,1,1,. . .) (1240,1510,. . .) (5,2,4,. . .) . . . (8,2,1,. . .) (2630,21. . .)

3 m (5,2,8,6,. . .) (0,1,1,. . .) (1490,1250,. . .) (7,3,1,. . .) . . . (4,9,2,. . .) (2130,19. . .)

4 f (8,2,1,5,. . .) (0,1,1,. . .) (1180,1120,. . .) (3,7,7,. . .) . . . (7,4,5,. . .) (2610,16. . .)

answer correctly, the DM task can be considered a Dot Enumeration (DE) task:
determining the number of dots in a visual array.

Table 1 displays a dataset slice. On the right side (to be used as target
attributes in the EMM model class, see Sect. 5), we present information from
the DE task. Attributes �1 and �2 represent the set size (1–9) and response time
in milliseconds respectively. These attributes are the dependent and independent
variables in a segmented linear regression model class as visualized in Fig. 1. We
indicate the fact that we obtain data from multiple DE items per child, by using
tuples (e.g., for the first item of child 1, the set size was 5 and response time
was 1330 ms). For the SA, SS, and CA tasks, the number of items (tuple-length)
differs per child; for the NC and DE tasks, the tuple-length is 52.

Apart from the set size and response time for each task, we may consider
information such as whether the item is answered correctly, what is the cor-
rect answer, and what is the numerical distance between two numbers shown in
a certain item. All this information is represented as separate attributes (e.g.,
attribute a3 indicates where the items on the NC task have been answered cor-
rectly yes or no) and will be used to discover and describe exceptional subgroups
of children. We have additional descriptive information such as a child’s sex (a1),
grade, and the language (Finnish or Swedish) in which they executed the tasks.

The data format as used by most traditional data mining algorithms is also
known as a propositional table; these are single-table representations where each
individual can be described with one term. In the attribute-value case, this term
is a tuple of attribute values [13]. For instance, a student could be represented by
a three-tuple specifying age, grade and language. Generally in EMM, we let the
subgroup description be a conjunction of selection conditions over the descrip-
tors, where condition selj is a restriction on the domain Aj of the respective
attribute aj . For instance, a description sex = girl ∧ language = Finnish covers
all girls who executed the FUNA tasks in Finnish.

However, for all attributes other than sex, grade and language, our dataset
does not follow this conventional data mining representation; a descriptive
attribute is not associated to one value, but rather to a tuple of values. In
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this case, it is unclear what it means to apply a selector selj directly; a selec-
tor a2 ≤ 3 would select items rather than individuals and a selector such as
a2t ≤ 3 where t refers to the item indicator, would inflate the number of descrip-
tors, which is detrimental to efficient traversal of the search space. In addition,
such a selector has little conceptual meaning, again because the items are quasi-
randomly ordered and item t is not the same across children. We will provide a
more satisfactory alternative in Sect. 4.

3 Background

Exceptional Model Mining (EMM) [4] is a local pattern mining framework seek-
ing coherent subgroups in the dataset that somehow behave exceptionally. The
observed attribute values are divided into descriptors a1, . . . , ak and targets
�1, . . . , �m. Dataset Ω is then a bag of n records r ∈ Ω of the form

r = (a1, . . . , ak, �1, . . . , �m). (1)

Subgroups are defined using descriptions; a Boolean function D : A → {0, 1}. A
description D covers a record ri if and only if D(ai

1, ..., a
i
k) = 1.

Definition 1 ( Subgroup cf. [4]). A subgroup corresponding to description
D is the bag of records GD ⊆ Ω that D covers:

GD = {ri ∈ Ω | D(ai
1, a

i
2, . . . , a

i
k) = 1}.

The complement contains all non-covered records: GC
D = Ω \ GD [4, p.53].

In EMM, the choice of description language D is free, though generally we
let the description be a conjunction of selection conditions over the descriptors,
where condition selj is a restriction on the domain Aj of the attribute aj . For
discrete variables the selector may be an attribute-value pair (aj = v); for con-
tinuous variables it could be a range of values (w1 ≤ aj ≤ w2) [4].

The task of EMM is to discover the descriptions whose subgroups dis-
play exceptional behaviour on the target variables. The precise instantiation of
“behaviour” depends on the application. A quality measure quantifies the excep-
tionality of within-subgroup behaviour with some reference behaviour model.

Definition 2 ( Quality Measure cf. [4]). A quality measure (QM) is a func-
tion ϕ : D → R that assigns a numerical value to a description D.

The challenge in EMM is to effectively search through the descriptive space to
find the top-q best-scoring subgroups.

In traditional EMM, the combination of Eq. (1) and a description language
based on conjunctions of selection conditions implicitly assumes the data to be
in a flat-table format where every record is an individual that is described by
a tuple of attribute values, and placed on a new row in the single flat-table.
In contrast, in this paper, an attribute a or � may or may not be measured
repeatedly per individual i. We focus our notation on the descriptive attributes,
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and write ai
jt to denote the tth measurement of the jth descriptive attribute for

the ith individual. Compared to Eq. (1), the form of the descriptive part of a
record (individual) r ∈ Ω changes to:

r = ((a11, a12, ..., a1t, ..., a1t1), (a21, ..., a2t2), ..., (ak1, ..., aktk
)) , (2)

where tij refers to the number of repeated measures of attribute aj for indi-
vidual i ∈ {1, 2, ..., n}, which may vary across individuals and attributes; we let
tj = maxi=1,2,...,n tij . Some descriptors may be measured only once per individual
(such as sex in Table 1); then, tij = 1 for all i.

3.1 Segmented Linear Regression

The goal of regression is to predict the value of an attribute y given a new value
of x, where x is a random draw from a vector of variables X = (X1, . . . , Xd)
with state space X . The simplest linear model for regression is one that involves
a linear combination of the input variables and parameters w: f(x,w) = wTx.
We additionally aim to model the uncertainty, modeling a predictive distribution
p(y|x) by assuming that the deterministic function f(x,w) has additive Gaussian
noise with zero mean and precision β (inverse variance). We then obtain the
likelihood function:

p(y|x,w, β) = N (y|f(x,w), β−1) =
n∏

i=1

N (y[i] | wTx[i], β−1), (3)

Next, estimating w and β using Maximum Likelihood Estimation shows that
the log likelihood of a regression model depends on the sum-of-squares error
function (SSR) [2] (see [24, Section 1] for an elaboration):

ln p(y|x,w, β) ≈ SSR(y, f(x,w)) =
n∑

i=1

(f(x[i],w) − y[i])2 .

Segmented linear regression appears to require non-standard optimization tech-
niques. However, one can parameterize the model such that it can be modeled
using an iterative, linear approach [18]. We focus on modeling a segmented rela-
tionship with two line segments between response variable y and one explanatory
variable xh by fitting the terms:

y = g(xh, α, β, ψ) = αxh + β(xh − ψ)+ (4)

where (xh − ψ)+ = (xh − ψ) · I(xh > ψ) where I(·) is the indicator function
equal to 1 if the statement is true and 0 otherwise. Consequently, ψ is the x-
axis break point, α is the slope of the line segment to the left of ψ, and β
is the difference in slopes between the line segments to the left and right of
ψ. Next, [18] iteratively fit linear models of the form αxh + βU (s) + γV (s) with
U (s) = (xh−ψ(s))+ and V (s) = −I(xh > ψ(s)). Every iteration, ψ̂(s+1) is updated
through

(
ψ(s+1) − ψ(s)

)
= γ̂/β̂ and when the algorithm stops and γ̂ ≈ 0, the sth

approximation is the Maximum Likelihood Estimate: ψ̂(s) ≡ ψ̂ [18].
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3.2 Connections to Existing SD/EMM Approaches

Linear target models for EMM are not a new concept [19]. Existing model classes
use QMs comparing a regression parameter between the subgroup and a reference
model. Instead, we follow the approach of [26] and [23] who build QMs on the
log likelihood. These QMs do not directly compare parameter estimates but
rather evaluate the overall fit of a model estimated on the subgroup. In addition,
in this paper, we utilize the special situation that when we assume Gaussian
noise, maximizing the log likelihood is similar to minimizing the residuals sum-
of-squares. This characteristic simplifies the notation and calculation of our QMs.

Our dataset has a nested structure: we aim to create subgroups at the level of
the individual, while having access to repeated measures per individual in both
target and descriptive space. We are not the first to consider time-varying tar-
get attributes. For instance, [23] analyzed glucose fluctuations and [3] discovered
funding applications with deviating temporal sub processes. However, in descrip-
tive space, these authors use attributes that are measured at the same level as
the individual; their flattening approach can be categorized as a transformation
to a wide flat-table data format. Alternatively, [16] transformed their data into a
long, stacked flat-table format where each row contains a transition rather than
an entire sequence. Consequently, [16] changed the notion of an individual: from
sequence to transition.

Relational subgroup discovery (RSD) [27] uses a propositionalization-based
approach using Prolog queries consisting of structural predicates, and create a
binary table where each column represents a newly created feature that may
or may not be present for a particular record. Our proposed method is best
described as a simple aggregation approach to feature construction [11]. We do
not apply automated feature construction methods; these typically assume that
columns of the dataset have a coherent semantic meaning, which our data does
not (cf. Footnote 1). We show that with domain-specific aggregation functions,
subgroup interpretability blossoms.

4 Our Proposed Flattening Approach

An aggregated descriptor is a descriptive attribute constructed out of one or more
original descriptors, where the original descriptors are defined as in Sect. 3 and
may or may not contain repeated measures per individual. The goal is to describe
each individual with one tuple of attribute values as in Eq. (1), rather than a
tuple of tuples as in Eq. (2). This allows defining descriptions as conjunctions of
selection conditions over the aggregated descriptors.

Denoting an original descriptor with aj , we construct an aggregated descrip-
tor ãh by applying a function ξ : R∗ → R

1 such that per individual, the number of
observed values on attribute ãh is 1. A function ξ may be applied to one or more
time-varying descriptors, possibly in combination with an invariant descriptor.
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Definition 3 (Aggregated descriptor). Given one or more descriptors
a∗ ⊆ {a1, a2, ..., ak}, an aggregated descriptor ãh is an attribute constructed by
applying a function ξ : R∗ → R

1 such that per individual, the number of observed
values on attribute ãh is 1, that is ãh = ξ(a∗).

Aggregated descriptors may arise from a function such as a summation or aver-
age, they may be non-linear (conditional) functions of one or more original
descriptors, and/or they could be parameter estimates of a statistical model.
Section 4.1 provides examples of all of these for the FUNA study.

The aggregated descriptors induce a tweak to the definition of a subgroup:

Definition 4 (Subgroup). A subgroup corresponding to description D is the
bag of records GD ⊆ Ω that D covers:

GD = {ri ∈ Ω|D(ãi
1, ã

i
2, ..., ã

i
s, a

i
†1 , a

i
†2 , ..., a

i
†k†

) = 1}. (5)

The domain Ã × A† is the collective domain of all aggregated descriptors
ã1, . . . , ãs and the time-invariant descriptors a† = {aj ∈ {a1, . . . , ak}|tj = 1}.

4.1 Domain-Specific Aggregations Functions

Definition 3 allows for many variations. In the context of FUNA, a simple exam-
ple is a function ξmax that counts the number of answered items per task. For
instance, ãi

1 = ξmax(ai
NC) = tiNC is the number of NC items answered by indi-

vidual i, where aNC is the item-indicator of task NC. We may want to know how
many items individual i answered correctly: ãi

2 = ξsum(ai
3) =

∑
t ai

3t, where a3 is
a binary attribute as in Table 1. We could subsequently measure the proportion
of correctly answered NC items: ãi

3 = ξmax(ai
NC)/ξsum(ai

3).
Other aggregation functions that are interesting from a domain perspective

are the mean and median response time of the correctly answered items. We
write ãi

4 = ξMeanTC(ai
3, a

i
4) = (ξsum(ai

3))
−1 ·∑t∈{1,...,t4} s.t. ai

3t=1 ai
4t. For ξMedTC

we would do something similar but take the median rather than the mean.

Table 2. An overview of the aggregation functions used in FUNA

Tasks Name Explanation

NC,SA,SS,CA MaxItem Number of answered items

NC,SA,SS,CA SumAnsC Number of correctly answered items

NC,SA,SS,CA PropAnsC Proportion of correctly answered items

NC,SA,SS,CA MeanTC Mean response time of correctly answered items

NC,SA,SS,CA MedTC Median response time of correctly answered items

NC,SA,SS,CA IES Inverse Efficiency Score

NC IcNumD Intercept of the response time regressed on the distance between the two numbers of every item

NC SlNumD Slope of the response time regressed on the distance between the two numbers of every item

NC IcNumR Intercept of the response time regressed on the ratio between the distance and the largest of the two numbers of every item

NC SlNumR Slope of the response time regressed on the ratio between the distance and the largest of the two numbers of every item

In the domain of educational learning, the Inverse Efficiency Score (IES) [7]
is a measure that combines both the median response time and the accuracy
(proportion of correctly answered items). The IES allows researchers to identify
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children with high response times, or a low proportion of correctly answered
items, since the IES score is high in both cases. For an individual:

ãi
6 = ξIES(ai

NC, ai
3, a

i
4) =

ξMedTC(ai
3, a

i
4)

ξPropAnsC(ai
NC, ai

3)
. (6)

For the Number Comparison (NC) task, it is interesting to analyze the numerical
distance effect [9]. When tasked with saying which of two numbers is greater,
this task is easier to perform when the numbers are far apart (NumD). If num-
bers have the same distance, the task is hypothesized [22] to be easier if the
largest number is smaller. This is called the Number Ratio (NumR). We regress
the response time of the NC items on the NumD (and once more for NumR),
and evaluate the intercept (Ic) and Slope (Sl) of these models. Thus, we first
create a time-variant descriptor aNumD = |aNCL −aNCR| (where aNCL and aNCR

are the numbers shown on the left and right in each NC item) and then fit a
linear regression model per individual i: ai

4 = f(ai
NumD, wi

0, w
i
1). Parameter esti-

mates wi
0 and wi

1 are the intercept and slope of the regression model, stored as
aggregated descriptors ãi

7 = wi
0 and ãi

8 = wi
1. We take the same approach for

NumR.
An overview of these aggregated descriptors is given in Table 2.

5 Our Proposed Target Model

We seek subgroups of children with atypical dot enumeration curves. We use the
segmented linear regression model as a target model (cf. Sect. 3.1) with response
time �2 as output (y) and set size �1 as input (xh) (cf. Table 1). We are interested
in finding any kind of deviation from the typical DE curve; in a typical DE curve
the subitizing slope is close to zero, the subitizing range is somewhere between
3 and 4, and the counting slope is relatively steep.

Following [26] and [23], we assume that the parameters of a linear model
fitted on the subgroup will likely describe the subgroup better than the param-
eters estimated on the entire dataset. Then, in the presence of a subgroup, the
log likelihood of dataset Ω will increase if the parameters of the subgroup are
separately estimated. For any subgroup SG and its complement SGC ,

ln p(SG|θSG) + ln p(SGC |θΩ) > ln p(SG|θΩ) + ln p(SGC |θΩ),

where ln p(SG|θSG) is the log likelihood of the subgroup for a segmented
linear regression model estimated on the SG with θSG = (αSG, βSG, ψSG).
We expect this term to be larger than the log likelihood of the subgroup
for a segmented linear regression model estimated on the entire dataset Ω:
ln p(SG|θSG) > ln p(SG|θΩ). Next, we use the characteristic of linear regression
that maximizing the log likelihood is similar to minimizing the sum-of-squares
error function (SSR) (see Sect. 3.1, and [24, Section 1]) and aim to find subgroups
where ln p(SG|θSG) > ln p(SG|θΩ) holds. Hence, we formulate our first QM as
follows:
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ϕssr =
1

ϕef
· − A

NSG

A = SSR(�2, g(�1, θSG)) =
nSG∑

i=1

ti
�1∑

t=1

(
�i
2t − α̂SG�i

1t − β̂SG(�i
1t − ψ̂SG)+

)2

, (7)

where NSG =
∑nSG

i=1 ti�1 is the number of observations in the subgroup in target
space and ϕef is the entropy function [4] to discourage tiny subgroups. We take
the SSR of �2 with respect to g(�1, θSG), which is defined in Eq. (4). If the
sum-of-squared error decreases, ϕssr increases.

Although both the regression parameters and precision depend on the sum-
of-squares, they are statistically independent. This means that we could find
subgroups with a small error where ln p(SG|θSG) > ln p(SG|θΩ) does not hold;
the log likelihood of the subgroup may be large, but it may not be larger than the
log likelihood of the global model, for instance when the regression parameters
θSG do not differ much from θΩ. Therefore, we propose a QM that rewards
not only small values of SSR for the subgroup, but also values of SSR for the
subgroup that are smaller than the SSR of the subgroup evaluated on the global
model:

ϕssrb = ϕef · A(B − A)
NSG

, (8)

where A is as in Eq. (7) and B is similar but with θSG replaced by θΩ.

6 Experiments

We perform two experiments with the FUNA dataset. First, we randomly sample
5% of the children and experiment with both QMs ϕssr and ϕssrb. We perform
beam search [4, Algorithm 1] with b = 4, w = 20, and q = 10. Especially
when working with domain-specific data, we aim for our resulting subgroup set
to be a good balance between interpretability, variety, and quality. To further
understand how a weighted coverage scheme (WCS) [14] can contribute to finding
such a balanced subgroup set, and what its relation is to the search depth d,
we vary d ∈ {3, 5} and the multiplicative weighting parameter of the WCS
γ ∈ {0.1, 0.5, 0.9}. We evaluate our results by inspecting the average quality of
the subgroup set, the average size of the subgroups, the number of subgroups (out
of q = 10) that validation with the Distribution of False Discoveries (DFD) [5]
cannot distinguish from false discoveries over m = 50, the average run time, and
two measures of subgroup set redundancy: Joint Entropy (JE) [14] and median
Jaccard similarity (JSIM) [20] (see [24, Section 2] for precise definitions). We use
the pwlf Python library to fit our segmented linear regression models [10].

Second, based on our findings in the first experiment, we choose the most
appropriate QM, value for d and value for γ, and repeat the experiment with
the full FUNA dataset (n = 15 486) and q = 20. All these children have at least
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5% of their answers correct in each descriptor task (NC, SA, SS, CA) and the
children have at least one observed answer for every possible set size in the DE
task. The maximum number of observed items in the DE task is 18 per child.
Our experimental code, all results, and a slice of the FUNA dataset are available
at https://github.com/RianneSchouten/FUNA EMM.

Extra experiments on Curran dataset We perform an additional set of experi-
ments on a fully public dataset and find subgroups of children with exceptional
relations between age and reading skills. Since our quality measures generalize
to linear regression problems other than segmented linear regression, we per-
form these extra experiments with polynomial regression. More information and
a short discussion of the results can be found in [24, Section 3].

6.1 Results Experiment 1

Figure 3 presents the standardized, average quality of a subgroup set (q = 10) for
various values of d, γ, and both QMs. In essence, the results are as expected: the
quality increases when either the description length d or the weight parameter γ
increases, and the impact of varying γ is larger for smaller d (see Fig. 3; absolute
difference between the smallest and largest quality for varying γ is larger for
d = 3 than for d = 5). Table 4 reports the other evaluation metrics: the average
subgroup size decreases when either d or γ increases, and in general, the sub-
group set redundancy is larger when d decreases or γ increases (higher JE, lower
JSIM). Except for 2 subgroups for ϕssrb when d = 3 and γ = 0.1, all discovered
subgroups can be considered valid discoveries.

Fig. 3. The relation between the aver-
age quality of a subgroup set (q = 10,
standardized per QM), search depth d,
and WCS parameter γ, for both QMs.

Fig. 4. Experimental results for both
QMs, d ∈ {3, 5}, γ ∈ {0.1, 0.5, 0.9}.

https://github.com/RianneSchouten/FUNA_EMM
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Table 3. Subgroup proportion, description and estimated target models for subgroups
1, 5, 6, 7, 10, 17 and 18, discovered with ϕssrb. The global target model is 1407+88�1 +
463(�1 − 3.3)+

SG Prop Description Target model

1 0.05 NC-IES:(0.04,1.0) ∧ NC-MeanTC:(0.23,0.74) 2179 + 124�1 + 764(�1 − 2.9)+

∧ SA-MeanTC:(0.71,1.0)

5 0.50 NC-IES:(0.03,1.0) 1541 + 106�1 + 624(�1 − 3.2)+

6 0.50 NC-IES:(0,0.03) 1091 + 70�1 + 475(�1 − 3.5)+

7 0.12 NC-MeanTC:(0.16,1.0) 1938 + 70�1 + 712(�1 − 2.8)+

∧ SS-SumAnsC:(0.0,0.32)

10 0.38 SA-MeanTC:(0.71,1.0) 1544 + 108�1 + 641(�1 − 3.2)+

17 0.30 grade = 3 1561 + 106�1 + 634(�1 − 3.2)+

18 0.27 SA-MaxItem:(0.6,1.0) 1064 + 62�1 + 441(�1 − 3.6)+

For ϕssr, given d, the average subgroup size, JE, and JSIM are comparable
when varying values of γ. It seems that there is barely an effect of the WCS.
When d = 5, the average quality is lower for γ = 0.9 compared to γ = 0.5, and
when d = 3, the average quality is lower for γ = 0.5 compared to γ = 0.1. These
results are unexpected since a decreasing γ is supposed to increase the variety
of the subgroup set at the cost of average quality. Inspecting the individual
descriptions and qualities, we find that for ϕssr the variety in the subgroup set
is larger when γ = 0.9 than when γ ∈ {0.1, 0.5}. Most likely, the reason is the
use of a square when calculating the quality. Even when we use a strict WCS
(small γ), the same subgroup recurs, since the weighted quality of the other
subgroups does not beat the non-weighted quality of the recurring subgroup.
When the WCS is very strict, at lower search levels, important precursors may
be removed and not available for refinement at higher levels. As a consequence,
a subgroup set with a strict WCS could have fewer candidate subgroups, which
in the end creates a relatively redundant subgroup set. It is unfortunate that JE
and JSIM do not fully reveal these conclusions. With ϕssrb the subgroup sets
are less redundant than with ϕssr, especially for small values of γ. Clearly, JSIM
increases and JE decreases when γ increases. Subgroups found with d = 5 are
slightly smaller than for d = 3.

6.2 Results Experiment 2

We perform the experiment on the entire dataset with ϕssrb, since this QM turns
out to be stable and produces small and interesting subgroups. We choose γ = 0.5
to balance between high quality and low redundancy. We choose d = 3 since
Table 4 shows that these results do not differ much from d = 5, and a description
with fewer literals is easier to interpret for domain experts. Descriptions and
target models of all top-20 exceptional subgroups can be found in [24, Section 2];
we report a smaller selection in Table 3 and Fig. 5.
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Fig. 5. Estimated segmented linear regression models of subgroups 1, 5, 6, 7, 10, 17
and 18 discovered with ϕssrb. Target model equations can be found in Table 3.

Although we allow for descriptions to have d = 3 literals, strong performance
is found in single-attribute subgroups. There is a variety in used descriptors (mul-
tiple aggregation functions, multiple tasks), subgroup size, and target models.
Compared to the segmented linear regression parameters of the global model,
15 out of 20 exceptional subgroups have a subitizing range lower than average;
the other 5 have a higher subitizing range.

Subgroups 1 and 2 have very similar subitizing curves: children in these
subgroups are particularly slow to subitize, and these groups are the only ones
that have an intercept over 2 s. The subgroups contain children with slow NC
response times (either expressed in terms of IES or mean response time) and both
are slow to solve addition problems (based on SA and CA tasks). The groups are
small, and probably most typical of dyscalculia, or at the very least groups with
children who are likely to have maths learning difficulties. Indeed, the subgroup
sizes 0.05 and 0.06 are in accordance with the dyscalculia prevalence estimate of
3–6% [25].

Subgroup 5 is a more general version of subgroup 1; it covers 50% of the
children and its description contains the first literal of the description of subgroup
1. The subitizing curve shows the same trend as the one of subgroup 1, but less
extreme: the subitizing range is smaller than the global model, but not as small
as in subgroup 1, and intercept, subitizing slope, and counting slope are larger
than in the global model, but not as large as in subgroup 1. Domain experts
suspect that these children have maths learning difficulties as well.

Subgroup 6 is the inverse of subgroup 5. This is not only clear from the
description in Table 3, but from the regression model in Fig. 5 as well; the subitiz-
ing range is higher, and the intercept and subitizing slope are lower than in the
global model. Subgroups 13, 15, 18, and 19 are the other four subgroups that
have subitizing ranges above the average, and characteristically have subitizing
intercepts (baseline response time or speed of processing) that are 300–350ms
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faster than the average and at least 500ms faster than any other group in the
table. They also have shallower (faster) counting slopes by 150–200ms than most
other groups.

Subgroups 18 and 19 have target models that are very similar to the one of
subgroup 6, even though the descriptions of these subgroups differ. Subgroup 6
expresses the subgroup in terms of NC-IES while subgroup 18 is described based
on performance on the arithmetic addition task (SA). A similar effect occurs
for subgroups 5 and 10: the target models are similar while the descriptions
use aggregated descriptors from different tasks. These findings suggest relations
between number processing skills and arithmetic skills. They additionally show
that it may be possible to obtain diagnostic information by focusing on fewer
tasks; that is, domain experts may be able to deduct information about the per-
formance on one task given the performance on another task. This is a promising
result that provides opportunity for further development of assessment tools and
intervention programs.

The only subgroup that does not use an aggregated descriptor is subgroup
17, which selects children in the third grade. Interestingly, the estimated target
model of subgroup 17 is similar as the ones for subgroups 5 and 10; similar to the
global model, expect for a larger counting slope. Compared to the other children
in the FUNA dataset, the children in subgroup 17 are younger and hence, slower
for all tasks, including the NC (subgroup 5) and SA (subgroup 10) tasks.

7 Discussion and Conclusion

The FUnctional Numerical Assessment (FUNA) project [21] develops digital
assessment tools for detecting dyscalculia and dyslexia in young children by
evaluating numerical processing competences such as the ability to enumerate
small sets of dots and to compare the relative magnitudes between sets. These
numerical processing competences are diagnostic markers of children’s emerg-
ing math abilities [7]. In this paper, we particularly focus on the characteristics
that define children’s enumeration ability, such as the threshold at which chil-
dren can determine the correct number of dots at a glance, known as subitizing
range, and other parameters of subitizing patterns such as the initial reaction
time and counting slope. Common algorithms used for estimating subitizing
range can produce inconsistent results [15] especially among individuals with
dot enumeration curves that deviate from the typical curve.

Therefore, we develop an EMM model class for segmented linear regression to
discover subgroups of children whose subitizing curves exhibit atypical patterns.
It could be argued that choosing segmented linear regression as a model class is a
drawback since the observations are not independently distributed (i.e. a model is
estimated on nSG independent children, who all contribute the measurements of
several items, resulting in a total number of NSG observations). Despite of that,
we follow this approach since segmented linear regression fits the neuro-cognitive
concept of subitizing very well. Furthermore, the assumption of independent
observations is required for most of the other algorithms as well; segmented
linear regression has the least baggage built into it.
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Our findings confirm the belief that numerical processing competences
strongly correlate with arithmetic skills. We find several exceptional subgroups
that confirm existing knowledge, including subgroups that are considered typi-
cal of dyscalculia; these children have slow NC response times and are slow to
solve addition problems. We find subgroups with similar subitizing patterns but
different descriptions. These findings demonstrate the strong relation between
subitizing, counting, and arithmetic ability, and additionally provide promis-
ing opportunities for further development of assessment tools and intervention
programs that focus on fewer tasks or a reduced number of items per task: it
may become possible to know the results on a particular task given a child’s
performance on another task.

Both quality measures in this paper assume that the overall population and
subgroups are best modelled with the canonical subitizing range model: a piece-
wise linear regression model with precisely one break point. However, it is entirely
possible that coherent subgroups of children do not follow this regimen: some
groups may display no substantial break point; behavior of others might be best
modelled by multiple break points. The piecewise linear regression model class
for EMM can accommodate this sort of behavior, but it requires development of
a new QM: log likelihoods will necessarily increase when more break points are
available to the model, so some penalty for model complexity must be involved.
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