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Abstract. Counterfactual explanations are increasingly proposed as in-
terpretable mechanisms to achieve algorithmic recourse. However, current
counterfactual techniques for time series classification are predominantly
designed with static data assumptions and focus on generating mini-
mal input perturbations to flip model predictions. This position paper
argues that such approaches are fundamentally insufficient in clinical
recommendation settings, where interventions unfold over time and must
be causally plausible and temporally coherent. We advocate for a shift
towards counterfactuals that reflect sustained, goal-directed interventions
aligned with clinical reasoning and patient-specific dynamics. We identify
critical gaps in existing methods that limit their practical applicability,
specifically, temporal blind spots and the lack of user-centered consid-
erations in both method design and evaluation metrics. To support our
position, we conduct a robustness analysis of several state-of-the-art
methods for time series and show that the generated counterfactuals are
highly sensitive to stochastic noise. This finding highlights their limited
reliability in real-world clinical settings, where minor measurement varia-
tions are inevitable. We conclude by calling for methods and evaluation
frameworks that go beyond prediction flips. We emphasize the need for
actionable, purpose-driven interventions that are feasible in real-world
contexts for the users of such applications.

1 Introduction

In an ideal world, Al systems would be useful to all users in varying contexts and
conditions. Yet, in many real-world applications, particularly in healthcare, users
may seek not only to understand an unfavorable outcome but also to explore
how they might achieve a more desirable one. For example, Al-powered digital
health interventions have been shown to effectively support lifestyle changes in
hypertension management [32], offering personalized guidance on activity, sleep,
stress, and diet. Such systems illustrate the shift from static decision support
to adaptive, goal-directed recommendations. This shift is central to the field of
algorithmic recourse, which focuses on producing explanations and actionable
suggestions for individuals impacted by automated decisions [27]. A distinction
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arises between contrastive explanations (CEs), which describe why an outcome
occurred instead of an alternative, and consequential recommendations (CRs),
which suggest specific interventions that would alter the outcome. While both fall
under the umbrella of counterfactual reasoning, CRs rely on stronger assumptions,
such as causal invariance and stationarity: the idea that past actions would yield
consistent results if repeated now [27], footnote p.95:4]. These assumptions raise
practical concerns, especially in dynamic domains like healthcare.

A Counterfactual Explanation (CFE) is a post hoc interpretability method
that identifies the minimal changes to input features required to produce the
desired prediction [54]. CFEs hold the promise of explaining model behavior
and supporting decision-making by answering contrastive (Why A, not B?) and
counterfactual (What if it had been B instead of A?) queries [47I29l52]. For
instance, a CFE might show a physician what ECG signal pattern would result
in a different diagnostic outcome or demonstrate to a developer how specific
input modifications influence model confidence. However, CFEs are increasingly
framed not just as explanations, but as recommendations. In e-health applications
such as AT coaching systems [32], suggestions of increasing physical activity or
adjusting the diet can be interpreted as counterfactuals to achieve better results.
In this case, CFEs are expected to serve as both a model interpretability tool
and a behavior-guiding recommendation mechanism. This extension demands
additional constraints such as actionability, plausibility, sparsity, and diversity,
which have led to the development of various evaluation metrics [G2/I7I12].

We argue that the growing multiplicity of purposes, users, and evaluation
metrics in CFE research creates ambiguity: it becomes unclear which methods
are appropriate for which use cases. An effective CFE technique for system
debugging may be misleading in a user-facing recommendation system. This
ambiguity is particularly problematic in time series classification (TSC), where
temporal dependencies make the generation of valid counterfactuals inherently
more complex. Changing a past value can alter the plausibility of future values,
and many counterfactual sequences, such as unrealistic changes to an ECG,
may be infeasible for the user to act upon. These challenges require a careful
re-evaluation of both the assumptions and evaluation criteria underpinning CFEs.
This position paper argues that CFEs for time series must reflect temporally
coherent, causally plausible, and user-centered interventions rather than just
input perturbations to change predictions. At a minimum, CFEs intended for
recommendation should be robust to realistic variability, such as noise from
human behavior or imperfect execution of suggested actions. We critically assess
the current state of CFE evaluation, particularly in time series settings, and
describe how new metrics and frameworks should better capture the demands of
user-centered, real-world recommendations.

2 Background

Consider a fixed black-box classifier f : X — ) that takes an observation x € X
as input and returns a probability vector [0, 1]* for discrete output labels k. We
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write f.(x) to denote the probability for class ¢ € [1, k]. The class label of the
highest score is simply written as g; the true label is y. In the tabular data
case, x = (x1, T2, ..., £4) is a d-dimensional vector taking values in X7 x ... x Xj.
Alternatively, we may consider X = (X1,Xs,...,Xq) € R™*? to be a univariate
(d = 1) or multivariate (d > 1) time series, where x; = (zj, 5, ...,27") is a
sequence of values of length m taken from the same feature space &;. The
time in between successive measurements may be regular or irregular, may differ
between features (channels), and could range from nanoseconds to several minutes,
depending on the origin of the data. Obviously, incorporating temporal structure
is of utmost importance in TSC tasks.

The field of algorithmic recourse is concerned with providing explanations and
recommendations to individuals who are unfavorably impacted by the outcomes
of black-box classifiers. Given an original input x € X, a CFE is a modified input
x’ that changes the prediction from the current class y to a different but desired
class y/, with y # y/. Naturally, in generating CFEs, the model prediction f(x’)
should be valid, the modified input x’ should be close in distance to the original
instance x. Following [24], a CFE is then computed as follows:

argmin cost(x,x’) s.t.f(x) # f(x), (1)

x'eX
where cost(x,x’) : X x X — RT is a distance metric in the input space. For
differentiable classifiers, a constrained optimization approach cf. [54] can be used:

arg min loss(f(x), f(x')) + A - cost(x, x'). (2)
x'eX
Equation expresses CFE generation as a differentiable loss, balancing two
key properties: validity (left term) and proximity to the original input (right
term). Section [3| expands this by discussing additional properties relevant for the
use of recommendations, such as actionability, feasibility, sparsity, diversity, and
robustness, each with associated evaluation metrics.
Equations and originate from the tabular setting, where instances
x € R In TSC, Equation is often retained to define CFEs as modified
inputs that change the predicted class. However, instead of using constrained
optimization as in Equation , most TSC methods rely on pattern mining
approaches, such as nearest unlike neighbors [133], subsequence mining [6/4], or
genetic algorithms [2143]. However, cost metrics like cost(x,x’) are inherited
from the tabular setting.

2.1 Experimental setup

We support our position with a small-scale evaluation of four representative CFE
methods for time series classification (TSC): NG-CF [13], CoMTE [3], AB-CF [36],
and TSEvo [21] (summarized in Section [3.1). These methods were selected for
their methodological diversity, citation impact, and prior rigorous evaluations.
CFEs for NG-CF, CoMTE, and TSEvo were generated using the TSInterpret
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Table 1: Dataset characteristics.
Dataset Training Test Length m #Classes k #Features d

ECG200 100 100 96 2 1
ECG5000 500 4500 140 5 1
TLECG 23 1139 82 2 1
Epilepsy 137 138 207 4 3

library [22], with outputs verified against their original repositories. AB-CF was
executed directly using its official implementation. All methods were run with
default parameters, except for NG-CF (using the Nearest Unlike Neighbor (NUN)
option) and TSEvo (limited to 200 epochs).

We evaluate each method on four datasets from the UEA-UCR archiveﬂ
varying in dimensionality (univariate vs. multivariate), number of classes (2
5), and class distribution. Two datasets represent clinical signals: ECG and
neurological activity. Table [I] provides an overview of dataset characteristics.
For each dataset-method pair, we randomly sampled n = 100 test instances,
generating one CFE per instance targeting a class different from the predicted
label (the second-highest probability in multiclass cases). CFEs were considered
invalid if they predicted the original class, and not all methods discovered a CFE
for every instance. Table 2] reports the number of discovered, invalid, and valid
CFEs. All subsequent analyses use the valid subset, with ny,;q9 < 100.

For each test instance x; and its counterfactual xj, we evaluate the confidence
of the predicted class and its validity, defined as 1 if the predicted class matches
the true (for x;) or target label (for x;), and 0 otherwise. To assess robustness,
we introduce Gaussian noise to both x; and x|, and re-evaluate confidence
and validity scores. This scenario, known as robustness against noisy execution
(NE) [24], simulates deviations in input due to imprecise user action or noisy
data acquisition. Specifically, we apply the perturbation function Xgauss = X + € -
N(0,0,), where o, is the mean of the per-feature standard deviation of x, and
€ controls noise intensity. Noise is sampled to match the shape of x and added
element-wise, approximating stochastic real-world variability. This aligns with
recent formulations of robustness that consider both stochastic noise [42] and
adversarial perturbations [I4] as part of a broader robustness spectrum.

In our experiments, € is varied from 0.0 to 1.2 to simulate increasing noise levels.
We report the average confidence (avgConf € [0,1]) and validity (avgVal € [0,1])
across Nyaliq test instances. This evaluation captures the model’s resilience and the
reliability of its counterfactual explanations under perturbations. The change in
validity under noise reflects the invalidation rate (IR) [42], quantifying robustness
as the average divergence between clean and noisy predictions. Metric definitions
are provided in Section [A] Code and results are available at https://github)
com/Healthpy/cfe_tsc_pos.

3 https://www.timeseriesclassification.com/
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Table 2: An overview of the number of invalid CFEs. Starting number is n = 100
instances.

Method ECG200 ECG5000 Epilepsy TLECG

AB-CF 40 37 9 0
COMTE 10 5 3 0
NG-CF 28 10 - 0
TSEVO 10 5 3 0

3 Related work

Interpretability and explainability are critical to building trust in machine learn-
ing, particularly in high-stakes domains like eHealth|9/T]. CFEs provide local
interpretability by identifying how an input must change to alter a model’s
prediction [29]. However, in this paper, we emphasize that explaining model
behavior is not equivalent to providing actionable recommendations for recourse.
Depending on the system and the user context, CFEs must satisfy more than
just validity (producing the desired prediction) and proximity (similarity to the
original input) [52]. Additional properties become essential, including sparsity
(minimal changes in characteristics), diversity (generating multiple and varied
CFEs), and plausibility (changes that remain realistic or adhere to the datamani-
fold) [52]. Critically, actionability: whether users can interpret and implement
the recommended changes must also be considered [T7J50].

Furthermore, when using CFEs in real-world applications, it is crucial that
they retain their validity under minor variations, such as small changes in the
original input or slight deviations in the proposed change vector. Data are
rarely pristine, and users may not be able to precisely execute the recommended
changes. In this context, [24] evaluate the CFE methods in four types of robustness.
First, robustness to model changes (MC) ensures that CFEs remain valid even
when the model f is retrained or slightly altered. Second, robustness to model
multiplicity (MM) addresses the variability between models that perform similarly
but produce different predictions for the same input CFEs that should remain
stable across this diversity. Third, robustness to noisy execution (NE) reflects
the imperfect implementation of the recommendations; small deviations should
still produce the desired result. Fourth, robustness to input changes (IC) requires
similar inputs to produce similar CFEs, supporting fairness and interpretability
when users have nearly identical profiles. An alternative categorization of [I§]
distinguishes the robustness to modifications in MC, IC, and CFE (related to NE
in [24]). To assess these properties, [53] and [24] list several evaluation metrics,
primarily developed for tabular data. Proximity is commonly measured using ¢;
and /o norms, while sparsity is quantified using the ¢y norm [25]. Validity and
robustness are evaluated through changes in predicted probabilities f.(x), such as
validity after retraining (VaR) or validity after perturbation (VaP) [24]. Additional
techniques include adversarial perturbation analysis, noise-based sampling, and
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diversity evaluations [33]. However, these metrics, rooted in static data, may not
fully address real-world temporal and practical challenges.

In the context of time series, evaluation strategies are generally similar to
those for tabular data. Instead, in Section [, we argue that these metrics may
not be sufficient for evaluating CFE methods for TSC, since time series are
inherently sequential and an input change in one value may not be achieved
without changing the previous or the next value. To the best of our knowledge,
no survey on CFE methods for TSC has addressed these implications, despite
the growing recognition that contributions in this area must extend beyond
algorithmic performance to real-world applicability. In this paper, we provide
an overview of the existing TSC CFE methods in Table [3] The methods vary
greatly in whether they modify single time points [2I], segments [13136], or
entire channels [3]. Many methods build on pattern mining methodology such as
motif discovery [38lI6], shapelets [35/420J39], nearest unlike neighbors [3/I3] and
saliency maps [37046]. Some methods rely on genetic algorithms [21143]; others
use gradient-based modifications of the input space [55/56].

Table 3: Overview of Counterfactual Explanation Methods for Time Series Clas-
sification. We distinguish methods based on Distance metrics (DiOp), Shapelets
(ShOp), Gradients (GrOp), Adversarial learning (AlOp), Evolutionary algorithms
(EvOp), Reinforcement learning (RLOp), and Causality (Causal). U/M refers to
applicability in univariate or multivariate time series.

Paper|Method Mechanism Category [U/M
13] CoMTE Channel substitution via greedy search DiOp M
13 NG-CF Segment substitution based on NUNs DiOp U
35 SG-CF Shapelet-guided transformation ShOp U, M
14 SETS Shapelet coefficient modification ShOp M
16 TimeX Barycenter averaging and saliency maps DiOp U, M
37 CELS Saliency map-guided perturbations GrOp U
[34] M-CELS Saliency map-guided perturbations GrOp M
55 Glacier Gradient search in original or latent space GrOp U
20 Time-CF Shapelet extraction and TimeGAN generation|ShOp, AlOp| U, M
[56] LatentCF++|Latent space perturbation with autoencoders GrOp U, M
[6] DiscoX Matrix Profile discord replacement DiOp U, M
[36] |AB-CF Attention-based segment modification DiOp U, M
[5] TeRCE Temporal rule mining with shapelets ShOp

[51] Ger Conditional generative model AlOp U, M
[38] |MG-CF Motif-based subsequence replacement ShOp U, M
[21] TSEvo Multi-objective evolutionary search EvOp U, M
[48] |CFWoT RL-based sequential decision-making RLOp M
[31] |SPARCE GAN-based sparse counterfactuals AlOp M
[46] LASTS Saliency maps, instance-based Hybrid |U, M
[57] |CounT$S Variational Bayesian causal modeling Causal M
[43] Sub-SpaCE |Genetic algorithms EvOp U
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3.1 Detailed summary of 4 distinguished CFE methods for TSC

In this paper, we experimentally evaluate the performance of 4 CFE generation
methods for TSC. First, NG-CF[I3] is among one of the early strategies, includ-
ing those based on K-Nearest Neighbors (KNN) or NUN, have inspired local
perturbation methods such as Native Guides [I3]. These methods are confined
largely to univariate settings and are heavily reliant on simplistic heuristics like
proximity and sparsity. It follows two steps: (i) retrieving the Native Guide,
where the closest instance from a different class is selected, and (ii) adapting the
Native Guide, where the instance is iteratively perturbed toward the query using
distance metrics like dynamic time warping (DTW) or feature weight vectors
(e.g., Class Activation Mapping) to modify key subsequences.

Second, CoMTE [3] is a multivariate extension. Although efficient, such meth-
ods ignore broader temporal and semantic structures, producing counterfactuals
that may appear valid locally but lack global interpretability. CoOMTE produces
counterfactuals in a multivariate context by perturbing the channels of a time
series using a heuristic method. They modified the initial approach of Wachter et
al[54]. by substituting the point-wise distance function d with one that operates
on a channel-by-channel basis.

Third, AB-CF [36] focuses on identifying and perturbing the most important
segments of a time series using an attention mechanism. By narrowing atten-
tion to a small set of influential segments, AB-CF ensures that the generated
counterfactuals are valid, sparse, and interpretable. The method first generates a
pool of candidate subsequences and then selects one or more per time series to
replace, based on their contribution to the model prediction, quantified using the
Shannon entropy algorithm. This targeted modification strategy enables AB-CF
to produce efficiently computed counterfactuals. Focusing on locality, the method
struggles to represent overall temporal relationships, leading to counterfactuals
valid locally but implausible globally.

Fourth, TSEvo[21] extends the concept of CFEs to both univariate and
multivariate time series classification. It formulates an optimization problem
that balances three key objectives: proximity, sparsity, and output distance.
This multiobjective optimization problem is solved using a genetic algorithm.
The algorithm employs crossover and mutation operations, applied both at
the level of individual time series values and larger segments, allowing it to
explore counterfactuals tailored for time series data. Unfortunately, the method
is computationally expensive.

The effectiveness of CFE methods ultimately depend on the utility of their
CFEs from a human-centered perspective. We argue that beyond technical correct-
ness, counterfactuals are valuable only to the extent that they are interpretable,
actionable, and robust in practical decision-making contexts.

4 CFEs for TSC have a temporal blind spot

It is obvious that in TSC tasks, the incorporation of temporal structure is of
utmost importance, and valuable methods have been developed specifically for
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this task [40]. However, we observe that such time awareness is lacking in methods
generating CFEs for those same classification tasks. In addition, we observe that
many existing evaluation metrics are borrowed from the tabular data case: These
metrics suffer from a temporal blindspot which limits their real-world utility,
particularly in longitudinal decision-making scenarios.

Consider Diameter App [I9], an e-health application that aims to support
patients with Type 2 diabetes to understand blood glucose fluctuations and
the relationship with certain lifestyle behavior choices [45I8/10]. Here, it would
be valuable to have CFEs suggesting a reduced carbohydrate intake at time
t to prevent hyperglycemia. Although such a CFE may be locally valid, the
intervention can inadvertently affect the glucose level at ¢t + 1. A CFE should
be temporally aware and consider downstream effects rather than instantaneous
classification shifts. It thus seems more appropriate to first change the input
sequence at one time point, then model its effect on the rest of the input sequence,
and then evaluate the potential change in prediction.

A step in the right direction would be to consider modifying subsequences
rather than changing the entire time series. Three of the four CFE methods that
we consider in this paper take this approach (NG-CF [13], AB-CF [36] and TSEvo
[21]). The fourth method, CoMTE [3], modifies entire channels (although it aims
to reduce the number of channels). Nevertheless, it is questionable whether these
kind of input changes could be considered feasible for end users like patients
and individual persons: one could probably directly influence the blood glucose
value at time ¢, but not again at time ¢ + 1, ¢ + 2, and so on, without taking
into account the effect of earlier changes. In this regard, robustness becomes a
critical property in time series CFEs, since minor perturbations at any point
could affect consequent events and disturb the semantic integrity of the sequence
and its classification accuracy. Sections and provide demonstrations.

In addition, we argue that CFEs for TSC should not be evaluated solely with
evaluation metrics developed for the tabular data case. Indeed, in addition to
evaluating the validity and confidence of CFE predictions, the formal definition of
a CFE as given in Equation persuades us to evaluate their cost(x,x’) € X x X.
Many existing CFE methods for TSC use common distance metrics such as the
£1 and ¢5 norm to evaluate cost(x,x’) as proximity. For multivariate time series
data, these metrics have high dimensionality. In addition, they do not reflect
other aspects that strongly relate to the concept of proximity, such as whether
two sequences have a similar periodicity or amplitude. We contend that other
evaluation metrics are needed, not just for evaluating proximity but also for
evaluating other important CFE properties such as sparsity. In Section we
demonstrate that small adjustments to existing metrics are insufficient.

4.1 Demonstration

Figure[I] compares the confidence of the predicted classes between CFEs and their
original instances for the ECG200 dataset. Recall from Table [1] that ECG200 is
a small dataset with IV = 100 training examples, k = 2 classes, d = 1 feature
and a sequence length of m = 96. Table [2| displays that many CFEs were not
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Fig. 1: Confidence distance between original and CFE (left), CFE with/without
e = 0.2 Gaussian noise (center), and original input with/without noise (right),
for nyaliqa CFEs from 4 methods on ECG200. Results are shown separately for
CFEs targeting class 1 (orange) and class 0 (purple).

generated at all (for the AB-CF and NG-CF methods), or considered invalid (for
all 4 CFE methods). We now discuss results in Figure |1] (see Table [4] in Section
for detailed information) for the ny,iq instances only.

First, we find that the classification model is robust to Gaussian noise with
€ = 0.2. This can be seen in the third, most right panel, where the difference in
prediction probabilities between instances with and without noise are close to
zero. Differences between CFE methods may occur due to randomness in the
generated noise. In contrast to original input, adding Gaussian noise to CFEs
notably affects the predicted class probability (center panel of Figure [1)). For all
four methods, prediction confidence generally decreases under noise, except in
two cases. First, for NG-CF and TSEvo, confidence in predicting class 1 increases
after noise is added, as seen in the orange boxplots on the right of the center
panel (values greater than 0). This indicates that CFE robustness may vary
between groups of instances, possibly due to training-related issues such as class
imbalance. Such disparities are problematic in practice, as they suggest that some
users may receive more (or less) stable counterfactuals. Evaluation protocols
should therefore go beyond global metrics and assess fairness between subgroups,
as discussed in further detail in Section [Gl

Second, CoMTE exhibits minimal change in prediction confidence when
Gaussian noise (¢ = 0.2) is added, clearly shown in both the center and left panels
of Figure[l] Unlike other methods, COMTE’s CFEs retain similar confidence to
the original inputs. This is likely because COMTE relies on NUN substitution [3],
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Fig.2: Comparison of the average proximity and average sparsity for 4 CFE
methods on the ECG200 dataset. (a) Proximity is measured with ¢; norm (x-axis)
and the DTW distance (y-axis). (b) Sparsity is measured by evaluating changes in
time points (x-axis) and changes in entire segments (y-axis). Results are displayed
separately for CFEs generated for class 1 (rather than 0, with square) and class
0 (rather than 1, with circle).

directly replacing the input with a near-instance from another class. Although
this produces high-confidence counterfactuals by design, such CFEs may lack
meaningful interpretability or personalization. Despite its robustness performance,
the reliance of COMTE on NUNSs raises concerns. As shown by the green dots
in Figure [2] these CFEs exhibit low sparsity and high proximity. We measure
proximity (Figure using both ¢; norm and Dynamic Time Warping (DTW),
and sparsity (Figure using two metrics: the traditional count of changed
input values and an adapted metric counting modified segments. The results are
consistent across both formulations and reveal a near-linear trade-off between
proximity and sparsity. This shows that high scores on traditional robustness or
proximity metrics do not necessarily imply useful or interpretable counterfactuals.

4.2 Alternative Views

Unlike tabular data, time series are inherently sequential; modifying one time
step may disrupt temporal dependencies or produce unrealistic patterns, even if
the perturbation is sparse. Consequently, standard pointwise proximity metrics
are insufficient: evaluation must consider global shape, alignment, and temporal
dynamics. While several works adapt existing metrics for time series [I3J3I5143],
we argue that current CFE evaluation strategies for TSC are fragmented: too
many metrics exist, and too few account for temporal structure meaningfully.
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A growing body of work calls for a more standardized and holistic evaluation of
explainability methods. Bhattacharya et al. [7] advocate a framework that spans
model, data, prediction, and user dimensions, stressing that evaluation must move
beyond isolated metrics. Artelt et al. [2] recommend prioritizing plausibility over
proximity to improve fairness and robustness, while Nguyen et al. [41] propose the
AMEE framework, assessing the robustness of the explanation via perturbations
between classifiers. Without such standardization, evaluation inconsistencies
can lead to misleading conclusions and unreliable deployment [52ITT44]. Tools
like TSInterpret [22] support multiple CFE methods (e.g., TSEvo [21I], NG-
CF [13], CoMTE [3]) and offer visualizations, while XTSC-Bench [23] provides
benchmarking across models and datasets. Kan et al. [25] further benchmark five
TSC CFE methods, proposing new metrics tailored for time series. Yet, even
with such tools, fixed evaluation sets, regardless of their temporal design, are
insufficient on their own.

We argue that CFEs for TSCs must be developed and evaluated within
the context of their intended application. For example, CFEs supporting ML
debugging differ significantly from those offering behavioral recommendations to
patients or treatment insights to clinicians. Time series inputs from wearables
(e.g., ECG, HR, step counts) vary in modifiability: while physical activity can
be altered, users cannot change their ECG. Thus, clinical feasibility cannot be
assumed from algorithmic success. It is essential to ask: who is the user, what
can they act upon, and in what context will CFEs be used? Without these
considerations, even CFEs that score well on existing metrics may fail in practice.

5 CFEs Should be User-Centered and Recourse-Aware

Classic CFE algorithms are typically task-centered, focused on flipping model
predictions with minimal input changes. However, CFEs are increasingly used not
only for interpretation, but also as a foundation for recommendations, guiding
users on how to achieve a desired outcome [52JT728]. This requires that CFEs
align with user goals, prior knowledge, and domain-specific constraints. Effective
recommendations must account for the user’s ability to interpret and implement
changes. Without this user-centered perspective, CFEs may remain technically
valid, yet practically irrelevant or misleading.

5.1 Demonstration

We illustrate this issue using results from the ECG200 dataset. Additional results
for ECG5000, Epilepsy and TwolLeadECG are provided in the Appendix
with highlights in Section [B-2] only when deviations occur. Figure [3] presents a
robustness analysis under increasing Gaussian noise. Across all four methods,
the original examples consistently maintain a higher validity under noise than
their counterfactuals. TSEVO and NG-CF show sharp drops in counterfactual
validity (below 0.4 at e = 0.4), while their originals remain above 0.65 even
at e = 1.2. COMTE shows a gradual decline, though originals still outperform
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ECG200 Dataset - Robustness Analysis with Confidence
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Fig. 3: Robustness analysis on the ECG200 dataset showing average validity under
increasing Gaussian noise for four counterfactual methods. Solid lines represent
original instances; dashed lines represent counterfactuals. Confidence levels are
shown with dotted and dash-dotted lines. Original examples consistently show
greater robustness to noise than their counterfactual counterparts.

counterfactuals. AB-CF CFEs degrade rapidly and the originals again show
greater resilience. The confidence curves further confirm this robustness gap
between the originals and CFEs.

Figure [1] reveals another concern: The counterfactual robustness varies de-
pending on the starting class of the user. For all methods, confidence differences
between original and counterfactual instances show consistent asymmetries when
split by recourse direction (class 0 to 1 vs. 1 to 0). This implies that the user
experience with CFEs is not uniform; some users receive more robust and action-
able recourse than others. This asymmetry raises concerns about the consistency
of the model and CFEs and highlights the need for evaluation protocols that
account for such directional biases.

5.2 Alternative views

This raises a critical question: are CFEs even suitable for achieving algorithmic
recourse in the first place? It may be more appropriate to reconsider the goal
of recourse from the perspective of practical utility, rather than theoretical
optimality or elegance. While many CFE methods have been proposed, their
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real-world applicability remains underexplored. CFEs may be useful in certain
scenarios but should not be treated as a universal solution for recourse. Recent
work has shown that when unknown attributes of the user are introduced, CFEs
may offer limited benefit compared to simpler explanations like reason codes [49].
This highlights the importance of evaluating interpretability methods from a
user-centered perspective, rather than relying solely on model-centric metrics.

To better formalize the distinction between explanations and actionable
recommendations, Karimi et al. [27] differentiate between input-based CEs and
recourse through feasible actions (CR). While CEs are changes in the input space
defined as x“F = x + § using a distance function like dist(x,x“F), CRs are
based on interventions in a set of feasible actions A(x):

argmin cost(x,a) s.t.  f(x) # f(x°F). (3)

acA(x)
Here, actions a are modeled as interventions in a structural causal model, where
modifying one variable may affect others. Thus, the cost of changing the input
vector (cost(x,x’)) can differ significantly from the cost of taking actions in the
real world (cost(x,a)). In causal settings, the counterfactual instance becomes
structural counterfactual x°“F(a,x), where actions a are grounded in the causal
graph.

However, defining actions through structural models requires access to causal
knowledge, which may not always be available. This motivates alternative for-
mulations that encode feasibility directly into the optimization objective. For
example, Ates et al. [3] introduce a binary diagonal matrix A in the cost function,
where A;; = 1 if feature j is allowed to change. SG-CF [35], another optimization-
based method for TSC, incorporates a shapelet-guided loss that balances validity,
proximity, sparsity, and contiguity. These approaches embed constraints into
cost(x,x"), enabling flexible but structured recourse generation. However, for
multivariate time series, the change vector grows from & € R? to R4*™ posing
the question whether traditional formulations of cost(-, ) remain meaningful.

Ultimately, whether by redefining the input space or integrating richer feasi-
bility constraints, we argue that algorithmic recourse must be designed in col-
laboration with the end user. In this direction, Knijnenburg et al. [30] proposed
the User-Centric Evaluation Framework for recommender systems, highlighting
six key dimensions: objective and subjective system aspects, user experience,
interaction, personal characteristics, and situational context. Recently, Donoso
et al. [I5] extended this framework to the evaluation of explainable AT (XAI)
systems. Following this line of reasoning, we contend that the development and
evaluation of CFEs, especially for time series, should be tightly coupled with
empirical studies of user experience to ensure that recourse methods are not only
technically sound but also practically usable.

6 Conclusion

This position paper identifies two key limitations in current CFE methods for
time series: the lack of user-centered design and a temporal blind spot in the
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evaluation. We show that strong performance on standard metrics does not imply
practical utility. A method may be robust and valid, but it produces CFEs with
high proximity or implausible suggestions that are unsuitable for end-users, such
as patients. In addition, class-specific disparities in CFE performance reveal
issues of fairness that could be overlooked. Current evaluations also ignore the
sequential nature of time series in a real-world context. Local input changes may
disrupt temporal coherence, leading to unrealistic or unfeasible recommendations.
To be actionable, CFEs must reflect user context and respect temporal structure.
We call for methods and evaluation frameworks that integrate both: moving
beyond prediction flips to feasible, goal-directed interventions.
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A More on experimental setup

A.1 Classification model

Given a training dataset D of N input-label pairs {(x;,v:;)}X; with x; a d-
dimensional time series and y; a true class label, we train an LSTM-FCN classifier
f following [26]. LSTM-FCN is a hybrid model that combines Long Short-
Term Memory (LSTM) networks, which are effective at modelling temporal
dependencies in sequential data, with Fully Convolutional Networks (FCNs),
which capture local and hierarchical patterns through convolutional layers. This
architecture has shown competitive results in TSC tasks due to its ability to
capture both sequential and spatial features [26]. The LSTM-FCN implemented
in this study is shown in Figure [d] with parameter settings.

[SET— o P

2-Layer LSTM 1; —
= @—@

Fig. 4: LSTM-FCN following [26].

A.2 Evaluation metrics

Given a dataset of N input-label pairs {(x(®,y®)}Y, where y® is the true
class label, we define the following metrics:

Average Confidence: The confidence of prediction for sample 7 is defined as
the probability assigned to the predicted class:

Conf® = f,0(x?),  where y = arg max_f.(x),

c€[1,k]

Then, the average confidence across all samples is:
Average Confidence(avgConf) = Z Jyo (x x( )

Average Validity: The validity of a prediction is defined as 1 if the predicted
class matches the true label, and 0 otherwise. When x is altered by noise, the
validity is defined as 1 if the new predicted class matches the previous prediction.

) 1 if y® = g ) )
Val®) = {0 ! t}yl ] L (y(z) = gj(z)) ,where ¢ is the predicted class
otherwise

Then, the average validity is:

N
Average Validity(avgVal) = Z (y( R ) .
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A.3 Other evaluation metrics

Sparsity (£p): This implementation measures sparsity between a time series x and
its counterfactual x at two levels: point-wise, using np.isclose() to compare
individual values within a small tolerance, and segment-wise, by dividing the
series into 10% segments, averaging each, and comparing those means. Both
return a score between 0 and 1 via np.mean(), with higher values indicating

greater similarity.
m

Y L(xi—xi[ <e) (4)

h=1

1
by = —
m
where e = 1le-3

¢1-norm: (Manhattan) distance: Calculates the sum of absolute differences
between corresponding points in the original time series x and counterfactual x’.

b(xx) =[x — x| ®)
i=1

ly-norm: (Euclidean) distance: Computes the square root of the sum of
squared differences between x and x’, representing the straight-line distance. It
emphasizes larger deviations.

DTW: Measures similarity between sequences that may vary in speed/time
by finding the optimal alignment between the points in x and x’.

dprw(x,x’) = min Z (xi — x})? (7)

™
(3,5)€n

where 7 is the optimal alignment path minimizing the total cost.

B More on experimental results

B.1 Detailed results

This section presents the results underlying Figures [I] and [2] in Tables [] and

B.2 Additional results
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Table 4: Table underlying Figure [1} The table contains the mean and standard
deviation of the distance in confidence between CFE and original instance (left),
CFE with and without e = 0.2 Gaussian noise (center), and original instance
with and without € = 0.2 Gaussian noise (right), for nya9 CFEs generated with
4 CFE methods (x-axis) on the ECG200 dataset. Results are displayed separately
for CFEs generated for class 1 (rather than 0, in orange) and class 0 (rather than
1, in purple).

CFE minus Orig. CFE w/wo noise Orig. w/wo noise

Method to-class nyaiiq mean sd mean sd mean sd
1 24 -0.19 0.24 -0.00 0.08 -0.09 0.18
AB-CF 0 36 -0.19 0.13 -0.02 0.06 -0.10 0.18
1 28 0.05 0.18 -0.01 0.05 -0.00 0.06
CoMTE 0 62 -0.01 0.13 0.01 0.04 -0.04 0.08
1 26 -0.22 0.24 -0.05 0.13 -0.00 0.14
NG-CF 0 46 -0.29 0.17 0.01 0.05 -0.13 0.19
1 28 -0.37 0.14 -0.04 0.10 0.08 0.19
TSEVO 0 62 -0.45 0.11 -0.00 0.03 -0.11 0.16

Table 5: Table underlying Figure [2l The table contains the mean and standard
deviation for 3 proximity metrics (¢1, £2 and DTW) and 2 sparsity metrics (¢y and
segment-based sparsity), over nyaiqa CFEs (see Table . Results are displayed for
CFEs generated for class 1 (rather than 0) and class 0 (rather than 1) separately.

2 £ DTW  Tp sparsity o Segment sparsity

Method to-class mean sd mean sd mean sd mean sd mean sd
AB CF 1 17.31 14.00 3.37 1.84 1.31 0.74 0.67 0.21 0.64 0.23
- 0 38.19 20.29 5.86 2.75 1.74 0.69 0.31 0.21 0.26 0.23
CoMTE 1 43.98 20.80 6.13 2.74 2.92 1.11 0.00 0.01 0.01 0.04
0 40.72 6.79 5.45 0.87 2.86 0.90 0.00 0.01 0.01 0.02

NG CF 1 16.86 17.04 3.50 2.41 1.75 1.39 0.64 0.26 0.56 0.30
- 0 19.65 12.98 3.43 1.74 1.78 0.98 0.51 0.25 0.44 0.25
TSEVO 1 9.50 8.57 2.91 1.92 1.80 1.03 0.85 0.08 0.68 0.14
0 20.12 14.17 4.52 2.14 2.29 1.24 0.67 0.19 0.51 0.20
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Fig.5: Robustness analysis of the CFE methods for all the datasets used
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