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Abstract. Active Learning (AL) aims to improve model performance
while minimizing labeling effort by selecting informative samples into
the training dataset. The importance is particularly clear when humans
are involved in the data collection and labeling process, and even more
so in the context of human-computer interaction (HCI) where users can
provide only few training samples and those samples should be as useful
as possible. Traditionally, AL methods iteratively increase the training
data set by selecting informative samples from an unlabeled dataset.
However, AL methods may be prone to oversampling certain regions of
the data space, potentially introducing redundancy in the dataset. To ad-
dress this issue, we propose an interpretable sample selection approach
based on a local pattern mining framework called Exceptional Model
Mining (EMM). EMM aims to discover subgroups in the dataset that
somehow behave exceptionally. These subgroups are described using an
interpretable language of conjunctions of attribute-value pairs. We pro-
pose an EMM-based AL approach that discovers, describes and selects
informative samples. As such, our method provides an explanation as
to why model performance is reduced for certain samples. In addition,
our method is an alternative to existing AL methods: given a diverse
subgroup set, we create a diverse and representative training set by se-
lecting samples from each subgroup. We evaluate the performance of
our approach against a traditional AL baseline and demonstrate that it
provides interpretable explanations and has good classification power,
especially when labeling budget is low.
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1 Introduction

The rapid expansion of machine learning (ML) is transforming various indus-
tries, driving advancements in areas such as healthcare, finance, and autonomous
systems [6,1,21,17]. Much of the success is attributed to developments in su-
pervised learning, where a predictive model M : X — ) is learned based on a
training dataset Diyain = {(%4, i)}, of n IID samples. The quality of Diyain
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is key for the quality of M. However, obtaining a sufficient number of informa-
tive samples could be time consuming, expensive, and require large amounts of
manual, human effort or expertise. This problem is particularly apparent when
humans are involved in the data collection and labeling process, and even more
so in the context of human-computer interaction (HCI), for instance when a
machine must learn from a small number a training samples [7, 26, 3].

To improve the quality of training data Diyain, Active Learning (AL) aims to
iteratively select samples that are most informative [33, 36]. Typically, the model
Mirain trained on an initial dataset Di,an is evaluated on a pool of unlabeled
samples Dynlabeled, from which a small set of informative samples are selected
and labeled [22,23,19]. The model M,y is then updated (or, re-trained) using
these selected samples, ideally resulting in an improved performance. The idea is
that when a model is presented with a training sample that is very similar to the
ones it has already seen, it is unlikely to learn from it; in contrast, by actively
selecting which samples to label, AL reduces the total number of samples needed
while simultaneously improving the model’s quality. In principle, the process of
selecting samples and updating the model can be repeated indefinitely.

AL faces challenges that limit its efficiency. Traditional methods based on
uncertainty sampling (i.e., selecting samples of which the model is least certain)
[5,19, 4] and Query-By-Committee (i.e., constructing a committee of models and
selecting samples where the committee disagrees about the prediction) [35] could
lead to redundant sample selection, increased computational costs, and bias in
sample selection. These limitations can result in inefficient use of the labeling
budget without providing enough informative samples for learning. Furthermore,
existing AL methods offer little interpretability as to why a certain sample is
selected [28,24,13].

Therefore, in this paper, we propose an interpretable sample selection method
based on a local pattern mining framework called Exceptional Model Mining
(EMM) [9,31]. EMM aims to discover subgroups in a dataset that somehow
behave exceptionally. These subgroups are described using interpretable, rule-
based conjunctions of attribute-value pairs. Exceptional behavior is defined using
a quality or exceptionality measure over parameters in a target model, estimated
on a set of target variables.!

We propose to utilize the EMM framework for discovering subgroups of sam-
ples with reduced model performance. To be specific, we build our target model
on the confidence scores of the unlabeled samples and propose three quality
measures for selecting the samples for which the model is least confident. Our
method contains two steps and our contributions are twofold:

1. We provide a diverse list of interpretable subgroups of informative samples.
That is, our method not just discovers subgroups of informative samples,
but additionally describes these subgroups in a human-interpretable way. We

! The term target should not be confused with outcome variable Y in a supervised
learning context. In EMM, the goal (i.e., target) of our task is to detect excep-
tionality, but there is no ground-truth as to where in the feature space exceptional
behavior may occur.
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thus explain why existing AL methods select certain samples and provide
insights into the characteristics of the unlabeled data space.

2. In addition, our method is an EMM-based AL approach that can be used as
an alternative to existing AL methods. That is, we select samples from each
subgroup and iteratively add those samples to the training dataset. Since
our subgroup set is diverse, our approach contributes to solving the existing
redundancy problem in AL.

The rest of this paper is organized as follows. First, we introduce notation and
provide background information on EMM in Section 2. We then position our
approach with respect to existing methods in EMM and AL in Section 3. In
Sections 4.1 and 4.2, we detail our proposed EMM-based AL approach in two
steps. We then evaluate the performance of our approach in Sections 5 and 6.
Section 7 concludes.

2 Background

2.1 Preliminaries

Let Dipain = L = {(xi,yi)}gl be the initial, labeled set, and Dyjlabeled = U =
{x;}.¥, be the pool of unlabeled samples. Here, x; € R? are the feature vectors
in a predictive model M : R? — ). The features are also to used as descrip-
tive attributes a1, as, ..., aq to create and describe subgroups in the Exceptional
Model Mining (EMM) [9] context, see more in Section 2.2. In this paper, we
assume ) € [0,1].

We refer to My as the model trained on the initial, labeled dataset L. For
any unlabeled sample x; € U, we then obtain a prediction g; and a confidence
score ¢; where §; = My (x;) and ¢; = argmaxycy P, (v | x;). Here, P, (v | x;)
is the predicted probability of class y € V.

The AL task is to select n' samples from U such that the model can be
updated from M;_;1 to M;, where t indicates the iteration. We denote the se-
lected samples at iteration t with V; = {(x, y;) ?;1 In this paper, we take an
approach where the model is re-trained using D; = D;_1 UV;. Remark that when
applying AL in the real-world, it requires effort to obtain the true labels y; of
the selected ¢ € {1,2,...,n'} samples in V;. As an alternative in this paper, we
use an experimental setup where L (Diyain) and U (Dunlabeled) are obtained by
randomly splitting an initial dataset D into three sets: Diyain, Dunlabeled and a
test dataset Diest. We thus have the true labels of the samples in U available,
and can use them to re-train the model in the next iteration.

2.2 More on Exceptional Model Mining

Exceptional Model Mining (EMM) [9, 31] is a local pattern mining framework
seeking coherent subgroups in the dataset that behave exceptionally. Tradition-
ally, EMM assumes a dataset {2 to be a bag of n records r € {2 of the form
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T‘:<a1,...,ak,€17...,€m), (1)
where k£ and m are positive integers. In EMM, we call aq, ..., ar the descriptive
attributes or descriptors of r, and £y, ..., ¢, the target attributes or targets of r.

In this paper, we use the predictors as descriptors; X7 = a1, Xo = ag, ..., Xqg = ag
and thus, d = k.

Subgroups are defined using descriptions; a Boolean function S : A — {0,1}.
A description S covers a record 7 if and only if S(al,...,a}) = 1.

Definition 1 (Subgroup cf. [9]). A subgroup corresponding to description S
s the bag of records Gg C {2 that S covers:

GS:{ri €| 8(al,ds,... ak) =1}

The complement contains all non-covered records: G§ = 2\ G [9, p.53]. In this
paper, we discover our subgroups in the unlabeled dataset and thus, 2 = U.

In EMM, the choice of description language S is free, though generally we
let the description be a conjunction of selection conditions over the descriptors,
where condition sel; is a restriction on the domain A; of the attribute a;. For
discrete variables the selector may be an attribute-value pair (a; = v); for con-
tinuous variables it could be a range of values (w1 < a; < ws) [9].

We aim to discover the descriptions for which the subgroups display excep-
tional behavior on a target model, fitted to a set of target attributes. A quality
measure quantifies the exceptionality of within-subgroup behaviour with respect
to some reference behaviour model.

Definition 2 (Quality Measure cf. [9]). A quality measure (QM) is a func-
tion ¢ : S — R that assigns a numerical value to a description S.

In this paper, we use the confidence scores as our target attribute, and hence m =
1. An example of an existing quality measure for 1 numerical target attribute
is proposed by [18] and called a t-score: it evaluates the distance between the
mean estimate in the subgroup and the mean estimate in the overall population
(the entire dataset). We present our proposed quality measures in Section 4.1.
Overall, the challenge in EMM is to effectively search through the descriptive
space to find the top-g best-scoring subgroups (the subgroup set). In this paper,
we use the commonly used beam search algorithm cf Algorithm 1 in [9,31].
In essence, beam search takes parameters w and d,,q., which define the width
and depth of the algorithm. It is a heuristic search algorithm that explores the
search space by maintaining a fixed number of the best candidate subgroups
at each level, defined by the beam width w. The algorithm works as follows: it
begins with the most general subgroup and iteratively expands it by adding new
conditions to create more specific subgroups, up to a maximum depth d,, .. Then
at each iteration, the algorithm first refines the subgroup by adding one feature
constraint and then evaluates the exceptionality by calculating the quality value
following . The top w subgroups will be expanded in the next iteration. By
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focusing on the most promising subgroups, beam search allows us to efficiently
explore the search space without considering every possible option, resulting
in high-quality subgroups found in reasonable time [9]. Given the advantages
of beam search, the EMM challenge shifts from developing an effective search
algorithm to developing the most suitable quality measures that lead the search
towards the interesting, exceptional subgroups. In Section 4.1, we discuss our
proposed quality measures for using EMM as an AL method. In Section 4.2 we
then outline our choice for search parameter settings and pruning techniques to
increase the diversity of the discovered subgroup set.

3 Related work

Active Learning (AL) is a machine learning approach used when obtaining labels
for the training data is expensive. This can be due to variety of reasons, for
example, if an opinion of expert is required which requires manual investigating
of each sample. Another reason could be that a difficult or risky procedure is
needed, for example, performing a biopsy on a patient. The main idea behind
AL is to reduce the number of labeled samples needed by selecting the most
informative samples to be labeled [33].

To be more precise about definitions, [11] distinguish AL, where the model
self-evaluates the unlabeled samples, mostly based on uncertainty sampling [5,
19, 4], from the domain of Machine Teaching (MT) [40], where there exists a sepa-
rate oracle that provides selected samples to the predictive model. Our proposed
EMM-based AL method can be seen as as such a separate oracle. Furthermore,
[11] distinguish MT from Active Teaching (AT). In AT, the oracle is an interac-
tive MT method that iteratively learns and improves the decision-making about
which samples to select [1,20]. In our proposed approach, the subgroup search
is repeated in every iteration, but there is no additional knowledge available to
the search algorithm to improve the quality measures or otherwise improve the
search for informative samples. Therefore, we consider our approach to be AL
or MT rather than AT.

AL has been applied in various domains such as natural language processing
[37,19] and bio-informatics [6]. Others have developed AL techniques for time-
varying data, such as Hidden Markov Models (HMM) [30] and sequential data
[34]. However, it suffers from some problems. One of them is the cold start
problem, that is, the initial model is trained on a very small datasets which
can cause unreliable confidence scores. Since these are used for the selection
of future samples for labeling this might cause further problems [27]. Another
problem is the model bias. The active learning may over sample certain regions
where the uncertainty is high and thus create bias in the model [25]. Finally,
active learning could be computationally expensive since it requires retraining
and using the model on the whole dataset at each iteration. In this paper, we aim
to reduce bias in the model by selecting diverse samples from different regions
of the unlabeled data space.
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Our method builds on the framework of Exceptional Model Mining (EMM)
[9], a local pattern mining approach that aims to discover subgroups in a pop-
ulation that somehow behave exceptionally. Generally, we consider EMM to a
generalization of the task of Subgroup Discovery (SD) [12, 39, 16], which focuses
on 1 target attribute where EMM assumes m > 2 attributes. The task of Sub-
group Discovery (SD) was well defined as follows: “In subgroup discovery, we
assume we are given a so-called population of individuals (objects, customers,
...) and a property of those individuals we are interested in. The task of sub-
group discovery is then to discover the subgroups of the population that are
statistically most interesting, are as large as possible and have the most unusual
statistical (distributional) characteristics with respect to the property of inter-
est” [39, p.84-85]. In EMM, the property of interest can be defined more flexibly,
but in essence the goal is still to discover interesting subgroups in a population.
Since our proposed quality measures in Section 4 use the confidence scores ob-
tained with a predictive model M, we essentially use 1 target attribute and our
method could therefore be considered a specific subtype of EMM.

One of our proposed quality measures follows [32], who discover exceptional
trend behavior in Repeated Cross-Sectional data. Specifically, [32] define excep-
tional behaviour within measurement waves using a z-score, where the distance
between a parameter estimate in the subgroup and the population is divided
by the standard error of the subgroup’s estimate. In this way, [32] account not
only for concept drift in the data-generating distributions of the descriptors,
but additionally push the search to larger subgroups. Earlier, [29] proposed a
quality measure which was called a z-score, but there the distance is divided by
the standard deviation of the entire target attribute, rather than the standard
deviation of the subgroup’s estimate (i.e., the standard error).

Our proposed method contributes to the domain of eXplainable Al (XAI)
[2] since we provide interpretable descriptions of informative samples. This in-
formation is directly valuable for improving the understanding of the trained
model, as it reveals which parts of the feature space are important for selecting
informative samples. Other EMM- and SD-based methods for XAI have been
proposed [10, 8,14, 15].

4 Owur proposed approach

AL aims to select the most informative unlabeled samples for labeling [33]. Tradi-
tional methods often rely on measures of prediction confidence and uncertainty.
In this paper, we propose using EMM to identify subgroups in the unlabeled
dataset where the model performs exceptionally bad. Our method contains two
steps, detailed in Sections 4.1 and 4.2 respectively. First, our method discovers
a variety of interpretable subgroups and therefore provides an explanation as
to why model performance is reduced for certain samples. Second, our method
creates a diverse and representative training set by selecting samples from each
subgroup in a diverse subgroup set.
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4.1 Discovering and describing subgroups of informative samples

We aim to discover subgroups of informative samples in the unlabeled dataset
U by defining a target attribute that represents the uncertainty of the unlabeled
samples’ prediction. To be specific, given the vector of confidence scores ¢ =
(c1,¢2, ..., cpu) of the nY unlabeled samples in U, the target value of sample
i€{1,2,...,nY} as ¥; = 1—2-|c;—0.5|. Consequently, the lower the confidence of
the prediction, the higher the target values. Remark that this particular mapping
from c to ¢ is quite specific for our assumption that Y = [0,1] (see Section 2).
However, the principle of changing confidence scores into uncertainty scores is
an easy step that one can apply in other contexts such as a different outcome
space or other decision boundaries.

We define three quality measures to quantify how exceptional a candidate
subgroup S is compared to the global data. First, we propose the mean uncer-
tainty deviation as follows:

Z‘es ¢; E‘eUéi
mu = — = ? — L . 2
Ymud(S) = ps — pu 5| U] (2)

Here, | S| and U are the size (i.e., number of samples) of the candidate subgroup
and unlabeled pool respectively. The quality measure calculates the mean devi-
ation of the subgroup’s uncertainty scores from the overall uncertainty mean of
U. The smaller the confidence, the higher the uncertainty, the larger the distance
between g and py, and the higher the exceptionality score wyug.

It is likely that a quality measure like ¢p,,q results in small subgroups, since
an extreme deviation is more easily obtained by selecting few samples. Therefore,
we follow [9] and propose to incorporate the entropy function ¢ y:

|S] 1S1, 1590, 189
o) == ({51 s i1+ 7 o ) @)

Here, S¢ represents the complement of the subgroup. Then, the mean uncer-
tainty deviation with entropy correction is:

Omudet(S) = (s — pv) - pet(S)- (4)

Quality measure @p,uq4cf is expected to favor subgroups that not only deviate
from the uncertainty norm but additionally have sufficient size.

An alternative way to push the search away from tiny subgroups, is by con-
sidering us as a statistical estimate with se(ug) its standard error. We then
create the uncertainty z-score:

(Puz(S) — |HS - MU| (5)

os/\/I1S]

where og represents the standard deviation of uncertainty values of the covered
samples in the subgroup. We expect ¢,, to be ideal for detecting subgroups
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of outliers or anomalous subgroup behaviors, since this approach considers the
variability within the subgroup itself.

We can use an existing search strategy as discussed in Section 2.2 to discover
and describe a top-¢ list of subgroups of samples with high uncertainty (low
confidence) scores. Traditional AL methods would simply select these samples
in the background. Instead, our pattern mining approach provides an explanation
as to why the selected samples are selected.

4.2 An EMM-based AL method

Given the top-q list of subgroups of informative samples, we propose Algorithm
1 when using EMM as a selection mechanism in AL. In essence, the algorithm
performs beam search with one of the quality measures ¢ € {¥mud, Pmudets Puz }
as described above in Section 4.1 (line 6), and then selects n' samples from
the list of discovered subgroups [S1, Sa, ..., S¢] (line 7). The selected samples are
added to the training dataset (line 8) and removed from the unlabeled dataset
(line 9). The process can continue for as many iterations as desired, until the
labeling budget is exhausted or a sufficient accuracy is achieved (line 11).

There are several ways to select the n! samples from the list of discovered
subgroups. In this paper, we evaluate two strategies in Section 6.2: the first is
to select samples at random from each group; the second strategy is to select
the most uncertain samples within each group. Furthermore, one can vary the
number of selected samples per subgroup. In Sections 6.2 and 6.3, we evaluate
results for selecting 1, 2 or 5 samples per subgroup per iteration.

5 Experimental setup

The experiments utilize the Pima Indians Diabetes (PID) database, which con-
sists of medical diagnostic data for predicting diabetes and therefore reflects a

Algorithm 1 EMM-Based Active Learning

Require: Labeled training set Dy, unlabeled dataset Uy, test set T’
1: Initiate t =0
2: M; < Train model on D;
3: Accuracy, < Evaluate(M;,T)
for t € {1,2,...} do
4: ¢ = {¢; = Confidence of M;_1 on Uy—1 | V x; € Uz—1}
5: 4= f(c)
6: [S1,52,...,S4] = BeamSearch(p, Ui—1 U £, dmax, W, q)
7: Vi = {SelectSamples(S;,n'/q)}1_,
8 Dy=Dy 1 UV,
91 Ut = Ut—l \ Zt
10: M; <+ Train model on D;
11: Accuracy, < Evaluate(M;,T)
12: Repeat until labeling budget exhausted or sufficient Accuracy achieved
end for
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scenario where data is collected from real humans and labeling requires a possi-
bly long and possibly intense diagnostic process. The data is available publicly
through Kaggle.? All code used for running the experiments can be found on
our github repository: https://github.com/luca-mainardi/EMMAL.

The PID dataset contains records for n = 768 female patients. The attributes
included in the dataset capture a variety of physiological measurements relevant
to diabetes diagnosis. The attributes are: the number of pregnancies each patient
has had, the plasma glucose concentration (measured two hours after an oral
glucose tolerance test), the diastolic blood pressure (millimeters of mercury),
the triceps skin fold thickness (millimeters), the serum insulin levels (micro-
units per milliliter), the Body Mass Index (BMI), a diabetes pedigree function,
which estimates the patient’s hereditary risk of diabetes and the patient’s age.
All these features are used as predictors in our classification model M, and as
descriptors in our EMM-based AL approach. The classification outcome variable
is a binary outcome indicating the presence (1) or absence (0) of diabetes.

To create our datasets L, U and T, we randomly pick 20% of the full dataset
for testing. Then out of the remaining 615 samples, only 123 or 20% are initially
labeled and assigned to L. The last 492 samples are considered unlabeled in U.
The classification model we choose for the experiment is Naive Bayes since it is
a popular, simple and fast classification model. The accuracy on the withheld
test set is recorded and proceed with our AL process following Algorithm 1. We
use 10 iterations.

We first evaluate our three proposed quality measures from Section 4.1. We
want to achieve group descriptions which are both interpretable and expressive
so we choose to have a bin depth of d,,.x = 3 for the beam search. This means
each subgroup will be described by at most 3 attributes. Furthermore, we set
the bin width to w = 10, meaning the algorithm brings 10 subgroups to the next
search level. We set ¢ = 10.

Furthermore, for the use of the discovered subgroups in selecting active learn-
ing samples, it is preferable that the subgroups have as little overlap as possible.
In that way, the subgroups cover various parts of the feature space. Therefore,
in this experiment we we compute and maximize the coverage of the subgroup
list when selecting the beam and final subgroup list.

As shortly discussed in Section 4.2, we evaluate our proposed method for
selecting samples from the subgroups randomly and based on uncertainty value.
We furthermore perform the experiment with different number of selected sam-
ples per iteration. Given that we set ¢ = 10, selecting 1 per subgroup means
selecting n = 10 per iteration, selecting 2 per subgroup is equivalent to n* = 20
and selecting 5 samples equals n* = 50.

In Section 6.3, we compare our proposed EMM-based AL method against two
baselines. First, we use a random selection mechanism (no AL) where we simply
randomly select and label the required number of n! samples from the unlabeled
set. Second, we use an AL baseline where we utilize uncertainty sampling. This
means that after calculating a confidence score ¢; for each sample x; € U, we

2 https://www.kaggle.com/datasets/uciml /pima-indians-diabetes-database
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identify and select the required number of instances that have a confidence score
closest to 0.5. Similarly, in this paper we take the n! samples that have the
highest uncertainty ¢; (as described in Section 4.1).

6 Experimental results

6.1 Evaluating our three proposed quality measures

Using different quality measures in the EMM beam search results in different list
of exceptional subgroups. Here, we perform a qualitative analysis to investigate
how the quality measure impacts the resulting groups. The quality measures
compared are mean uncertainty deviation ¢p,q in Equation (2), mean uncer-
tainty deviation with subgroup size correction using the entropy function @, det
as in Equation (4) and the uncertainty z-score ¢, as in Equation (5). We present
the top-3 for the three quality measures in Tables 1, 2 and 3 respectively.

First of all, we notice that the different quality measures produce groups
of different sizes. The subgroups produced by ¢nua are of similar size, usually
between 30 and 50 samples. Furthermore, with .4, all of the groups are de-
scribed by two attributes. The combined size of all ¢ = 10 groups is 425, which
indicates that there are overlapping samples regardless of the used cover-based
pruning technique.

As expected, the groups produced by ¢muder are significantly larger than the
groups produced by ¢muqa. The top-3 subgroups discovered with ¢p,uqer cover
about 150 samples per subgroup, and the total size of all samples is 1330. Here,
interestingly, all subgroups are described by a single attribute.

Similar like the groups produced by @mudet, the groups found with ¢, are
also larger than the ones discovered by ¢mua (Where no subgroup size correction
was applied). In contrast to ¢muder, quality measure @, leads to a subgroup list
that contains more heterogeneous subgroups, that is, there is a larger variety of
subgroup sizes; some being about 150 and others closer to 50. At the same time,
the combined size of samples is 1045, which is larger than the combined sizes of
the other quality measures, indicating the presence of some very large subgroups
at a lower rank in the top-10.

Regarding the features in the descriptions of the subgroups, all quality mea-
sures rely on the variables insulin and glucose. Clearly, these variables are im-
portant for correctly predicting whether a patient (sample) has diabetes or not.

Table 1: Description of top-3 subgroups using Mean Uncertainty Deviation ¢4
as in Equation (2). The top-10 subgroups together cover n = 425 cases.
SG Description Score Size
1 130 < Insulin < 744 AND 115 < Glucose < 140 0.26 49
2 18.57 < Glucose < 140 AND 3 < Pregnancies < 6 0.23 37
3 130 < Insulin < 744 AND 0 < Pregnancies < 1 0.25 31
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Table 2: Description of top-3 subgroups using Mean Uncertainty Deviation with
subgroup size correction with the Entropy function ¢muder as in Equation (4).
The top-10 subgroups together cover n = 1330 cases.
SG Description Score Size
1 130 < Insulin < 744 0.15 147
2 18.57 < Glucose < 140 0.12 153
3 41 < Age <72 0.08.5 136

Table 3: Description of top-3 subgroups using Uncertainty Z-score ¢y, as in
Equation (5). The top-10 subgroups together cover n = 1045 cases.

SG Description Score Size
1 130 < Insulin < 744 AND 115 < Glucose < 140 8.5.56 49
2 130 < Insulin < 744 8.74 147

3 36 < BMI < 67 AND 18.57 < Glucose < 140 6.55 52

Other important features are age and BMI. Remark that currently, not all de-
scriptions in Tables 1, 2 and 3 are directly interpretable for patients, although
many of them are. A patient with diabetes will know what are preferred insulin
and glucose values. The descriptions furthermore provide interpretable expla-
nations to doctors, and they may furthermore be well aware to what part of
the distribution these particular subgroups belong (i.e., whether certain values
should be considered high or low).

6.2 Evaluating EMM as an AL method

Next, we investigate different strategies for sample selection (random vs based
on uncertainty score), as well as how the number of samples within the group
and the number of iterations impact the results.

Figure 1 displays the increase in prediction accuracy from ¢t = 0 to ¢ = 10 (x-
axis) when adding (a) 1 sample, (b) 2 samples, and (c) 5 samples per subgroup
per iteration (for a total of ¢ = 10 subgroups). We compare the result for three
quality measures (@mua in blue, Ymudet in green, ¢,, in orange) and compare
adding samples at random (low density color) with adding samples based on
uncertainty score (highest uncertainty first, in bold).

The figure shows that the accuracy of the classifier increases significantly in
the first couple of iterations, even though only few samples have been added;
40 and 80 samples in the first four iterations when adding 1 or 2 samples per
iteration respectively. This constitutes less than 10% and less than 20% of the
full dataset. Furthermore, Figure 1 demonstrates that the uncertainty sampling
technique performs better than the random sampling technique. This is to be
expected. However, there is no clear difference between the performance of the
three quality measures. Interestingly, Figure 1c shows that when we have la-
beled sufficient number of samples, the differences between the two sampling
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Fig. 1: Classifier accuracy (y-axis) when using EMM as an AL technique. We
compare 3 quality measures (pmuq in blue, pmudet in green, ¢y, in orange), 2
sample selection methods (random with low density, uncertain samples first, in
bold) and evaluate differences in adding 1, 2 or 5 samples per subgroup per
iteration, for 10 iterations (x-axis) and g = 10 subgroups).

(a) 1 sample (b) 2 samples (c) 5 samples

techniques disappear (i.e., the light and bold lines overlap). Here we can also ob-
serve that when a big proportion of the dataset has been included in the training
dataset, the accuracy decreases, or at least no longer increases. This occurs in
Figure 1c around ¢t = 4, when about 5 - 10 - 4 = 200 samples have been added
already. This finding is a sign that the model is overfitting, or at least does not
gain any additional knowledge from the added samples.

6.3 Comparison against AL baseline

We now compare our EMM-based AL method against two baselines: the null
baseline where samples are randomly selected from U without further oracle
information (in blue in Figure 2) and an AL baseline that performs uncertainty
sampling (in orange). We perform our EMM-based AL method using quality
measure @4 ((in green), since all quality measures performed similarly well on
the previous analyses in Section 6.2, we proceed to use the Mean Uncertainty
Deviation as quality measure due to its good qualitative performance on the
dataset in Section 6.1. That is, @yuq resulted in fairly smaller datasets, which
increases our hopes that the subgroups are more diverse and cover various parts
of the feature space.

Clearly, Figure 2 demonstrates that an AL paradigm improves the perfor-
mance of the classification model. This is particularly apparent when adding 2
samples per iteration (center).

Furthermore, we observe that when adding 1 sample per subgroup per iter-
ation, our method performs better than the AL baseline. This can be seen from
the green line, that results in severely higher accuracy values from ¢t = 3 onward.
These findings support our hypothesis that using EMM is beneficial for selecting
the set of most informative samples. Compared to selecting samples based on
just the uncertainty values, as does the AL baseline, our EMM-based search is
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Fig. 2: Classifier accuracy (y-axis) when using EMM as an AL technique. Com-
parison against a null baseline (adding random samples from U without further
oracle information, in blue) and an AL baseline that performs uncertainty sam-
pling, in orange. We perform our EMM-based AL method (in green) using quality
measure Q,.q, and evaluate differences between adding 1, 2 or 5 samples per
subgroup per iteration, for 10 iterations (x-axis) and ¢ = 10 subgroups).

able to discover a larger variety of subgroups covering more parts of the feature
space. Especially when only few samples are added to the training data, our
EMM-based approach outperforms the AL baseline method.

When adding two samples per iteration, our method performs similarly to
the AL baseline; when adding sufficiently large number of samples to the training
set, the differences between an EMM-based AL method, an AL baseline and a
random, null baseline disappear. Here, there are so many samples selected that
almost all samples in U will end up in D;. Similar as in Figure 1, the accuracy
starts decreases after several iterations; possibly due to overfitting.

7 Discussion and Conclusion

In this paper, we proposed a novel method for interpretable sample selection
in the Active Learning (AL) process using Exceptional Model Mining (EMM).
Traditional AL methods are prone to oversampling certain regions in the feature
space. As an alternative, we use the EMM framework to discover a diverse list of
subgroups of informative samples. By integrating EMM, our approach identifies
subgroups within the unlabeled data whose uncertainty characteristics deviate
from the rest of the data. By choosing samples from within each identified group,
the training set includes more diverse and representative samples.

Our experiment on the Pima Indians Diabetes dataset show that EMM is
capable of identifying descriptive groups within the unlabeled set which allows
us to make a more informed selection of the samples for labeling. By labeling
the most uncertain samples from the discovered subgroups, we show that the
EMM-based method performs better than selecting random samples for label-
ing, especially when the number of selected samples is small (e.g., 1 sample per
subgroup; 10 samples per iteration). Currently, our method is on par with uncer-
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tainty based AL when more samples are added. We hypothesize that our method
could further outperform existing AL methods also in these scenarios, when our
beam search is enhanced with more anti-redundancy techniques, following [38§].
The strength of our proposed method is to create a diverse list of subgroups such
that a diverse set of samples can be added.

At first instance, it seems that the choice of quality measure has little impact
on the performance of our method. However, similar as in traditional AL where
the sampling mechanism is increasingly improved, we hypothesize that a more
informed quality measure could further improve our proposed method.

One limitation of AL methods which we do not address is the computational
cost. In our proposed method this is even higher since both the classification
model and the EMM model need to be run at each iteration. Future work could
focus on developing more efficient algorithms or heuristics for subgroup discov-
ery and EMM evaluation. It would also be interesting to see whether our pro-
posed EMM-based AL method could outperform existing AL baseline without
re-running the search algorithm during every iteration. For instance, we could
run the subgroup search once at ¢ = 0, and then iteratively pick samples from
these subgroups. This approach would significantly reduce the computational
cost of our proposed EMM-based AL method.

In sum, this paper presents an EMM-based AL approach that provides inter-
pretable explanations regarding selected, informative samples, and additionally
is a standalone, AL method that gives good classification performance, espe-
cially when labeling budget is low (and few samples are selected). At a larger
scale, we demonstrate that EMM is a valuable framework that could serve as an
explainability method in larger Al systems. Moreover, we demonstrate that the
list of discovered subgroups can be utilized for more than knowledge discovery.
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