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Abstract

We provide a transparent method to characterize Atrial Fibrillation
(AF) caused by cardiac surgery, using Electrocardiogram (ECG)
phenotypes. Current practice in the hospital is reactive rather than
preventive and is based on a third party’s proprietary alarms on
vitals. Assistance with detection and prediction methods often lacks
sufficient insights into their decisions toward the users, i.e., the hos-
pital workers. This aspect is necessary to gain the trust of medical
workers and patients in the decisions that are made. Our objective of
transparently identifying risk factors for AF helps experts increase
their understanding of the problem, and assists in decision-making
about administering preventive medication to risk groups. With
the deployment of the Exceptional Model Mining (EMM) frame-
work on AF-related ECG phenotypes, we introduce a transparent
and actionable method that assists the hospital in preventive treat-
ment. We find several subgroups with EMM that align with known
risk factors in the existing literature, confirming the ability of our
method to identify risk groups of AF successfully. In addition, new
hypotheses on found characteristics and combinations thereof have
originated from the deployment. The hospital is advised to adminis-
ter preventive medications to patients who match the descriptions
of the risk groups found and perform follow-up clinical studies to
validate the found hypotheses.
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1 Introduction

Atrial Fibrillation (AF) is a cardiac arrhythmia that can be a side
effect of cardiac surgery [1]. Up to 50% of cardiac patients develop
AF within the first four weeks after surgery [44]. Once a patient has
experienced AF, episodes can come and go for the remainder of their
life. The resulting heart rhythm disturbance leads to turbulent blood
flow, which can cause blood clots. A stroke is the main consequence
of these blood clots [40]: 20% of AF patients get a stroke, making AF
its leading cardiac cause [18]. AF episodes can be cured, but the risk
of future episodes remains. Medication can prevent AF occurrence,
thereby preventing risks introduced by AF [37]. The value of our
method lies in identifying the risk groups of AF for which doctors
can administer these preventive medications.

Current practice is reactive rather than preventive [37]. Monitor-
ing systems are installed in the intensive care unit and operating
rooms to record vitals and are equipped with alarms. These systems
are created by a third party, using proprietary methods: alarms are
triggered by variations in Electrocardiogram (ECG) signals whose
properties are unknown to the users, i.e., the hospital workers. This
method is sufficient to help patients who experience AF, but as the
episode is already occurring, preventive medication cannot be ad-
ministered. Predictive methods have been applied to assist doctors
in dividing ECG features, and detecting and predicting AF [5, 20, 58].
This is possible due to the phenotypes in the ECG signals such as
irregular Heart Rate Variability (HRV) and the absence of P-waves
(more details to follow in Section 2). These solutions generally fall
under the global modeling paradigm within data mining: one model
is trained to make a prediction for every patient in the current data
set and every new patient that might still emerge later. This one-
size-fits-all approach is common: we learn a model, striving for a
high predictive accuracy that generalizes to unseen examples, and
then deploy that model globally. It is well-known, however, that
this is not necessarily the correct approach in medicine [13]. To
build trust between the deployed methods and the users, i.e., the
medical workers, and to comply with ethical considerations about
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the sensitive healthcare application, we should ensure that patients
receive the care that is correct for them. In a move towards stratified
medicine [55] we develop and deploy a method that can identify
subgroups of patients with a higher risk of developing AF during
or after surgery, aimed at detecting combinations of risk factors.
With this information, doctors can provide preventive medications
which may avoid the need to resort to curative treatment.

A suitable method for stratified medical assistance is Exceptional
Model Mining (EMM) [16, 35]. EMM aims to identify actionable
subgroups that show exceptional behavior, such as phenotypes on
the ECG that indicate AF. Existing EMM methods are commonly
applied to tabular representations of the data. However, our research
concerns time-varying data: time series in the form of ECG signals
and their characteristics. We address in this paper the challenge of
adapting existing EMM methods to fit our data type.

The deployment of our method in the Catharina hospital in
Eindhoven, the Netherlands has resulted in the discovery of various
risk groups that are defined in terms of patient characteristics and
have exceptional morphologies in their ECG. These subgroups
align with existing literature, thus confirming the validity of our
approach. We find several surprising risk group characteristics and
combinations thereof that are interesting to research as hypotheses
in future work on AF risk factors. Our results assist the hospital
workers in determining the need for preventive medication for
patients described by the subgroups.

This research contributes to the field of AF analysis and EMM.
Our contribution includes: 1) deployment of EMM in the hospital to
characterize AF; 2) discovery of previously unknown potential risk
groups for AF during and after surgery; 3) application of EMM on
ECG signals (time series); 4) introduction of new quality measures
based on ECG phenotypes; 5) evaluation of the validity of subgroups
using additional medical characteristics.

2 Background and Related Work

The process of pumping blood through the body, the cardiac cycle,
works with pressure variations activated by an electrochemical
pulse [28]. Every individual has a unique rhythm of the cardiac
cycle, the heart rhythm, suitable for their body type and lifestyle,
adapting to daily activities by increasing or decreasing the fre-
quency of cardiac cycles, the heart rate.

We monitor the heart rate by measuring its electrochemical
activity, through an Electrocardiogram (ECG). Using up to twelve
leads, we record several angles resulting in different morphologies
of this activity [41]. The signals are complex waveforms of elements,
typically modeled as a PQRST-complex; Figure 1 displays an example.
This model imitates the heart in two cardiac cycles.

Atrial Fibrillation (AF) is a heart arrhythmia that is often trig-
gered after cardiac surgery. It is caused by a dysfunction in the
node that gives the electrochemical pulse to activate the cardiac
cycle. AF patients receive this signal through pulses originating
outside of the sinoatrial node. These rapid pulses cause the atria,
the heart’s upper chambers, to fibrillate [28]. AF can be identified
by variations in the morphology of the ECG, the phenotypes. This is
a nontrivial task. Within a single patient, the ECGs that are typical
of AF episodes commonly display a substantial higher degree of
irregularity than the ECGs that are typical of regular sinus rhythm
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Figure 1: The ECG signal of two cardiac cycles showing each
component in the PQRST-complex and the RR-interval.

heartbeats. However, simultaneously, ECGs differ drastically when
compared across patients: what is a regular heartbeat for the one
patient may not be a regular heartbeat for another patient. This
diversity of signals between patients provides a challenge for ex-
tracting the AF-relevant aspects from ECGs. In the PQRST-complex
of a patient’s ECG, the P-waves represent the electrochemical sig-
nal: AF causes absence of this signal which causes absence of the
P-wave in the ECG. As a consequence, a sequence of impulses can
be generated in the heart that mimics the absent signal, causing
fibrillatory waves (F-waves) to form between the T-wave and the
QRS-complex [26]. The other visible phenotype is irregular Heart
Rate Variability (HRV), shown by the RR-intervals. The duration of
the RR-interval varies from the beginning to the end of an episode
of AF, making it a consequence of AF rather than a precursor [51].

2.1 Predictive Methods

With new technologies, AF can be detected without continuous
manual monitoring or third-party alarms. A simple method uses
statistical analysis on the PQRST-complex in ECG signals [54].
Improvements include more complex frameworks based on the
irregularities in the signals found using pattern analysis based on
various phenotypes, such as RR-intervals [33] or missing P-waves
[14]. These models can be based on autoregressive moving average
models [33], hidden Markov models [14], and neural networks [11].
AF detection focuses on the phenotypes indicating AF, while
prediction algorithms must find abnormalities in the ECG before
AF. These algorithms use various characteristics in frequency, time,
space, and other nonlinearities modeled using a support vector
machine [10], random forest, multilayer perceptron, and k-nearest
neighbor [50]. Many more applications of detection and prediction
algorithms exist; a good survey can be found in [32]. The detection
and prediction algorithms achieve great accuracy, but in a global,
one-size-fits-all manner that befits data mining really well but may
not be the best approach for medicine [13]. This complicates the
deployment of these predictive methods in real-world practice.

2.2 Descriptive Methods

As opposed to the global modeling exemplified by predictive meth-
ods, another class of methods takes a local view of the data set,
striving to describe only part of the data set at a time. This setting
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Table 1: A toy example of the shape taken by our data set Q, illustrated with two concrete patients. The data for each patient
partitions into three modalities: the descriptors ay, ..., ays describe Electronic Health Record data including medical history and
demographics, the targets ¢, .. ., {x are the heartbeats derived from the patient’s ECG, and the third set by, ..., b are binary AF
complication occurrences at L time stages as annotated by medical staff or provided by a black-box algorithm. Exceptional
Model Mining traverses the search space of candidate subgroups of patients defined in terms of the descriptors ay, ..., ay, and
evaluated by a quality measure that rewards a subgroup for excelling in three components (cf. Section 5.1.4): 1) displaying
exceptional Atrial Fibrillation phenotypes derived from the targets 7, . . ., fx; 2) including a substantial number of patients;
3) including a substantial number of AF complications as represented by the binary complication occurrences by, ..., br.

patient‘a1=age as=smokes? ... apy=bloodloss b ... tg by by ... bg

P! 30 no high B B N N RV
p? 46 yes high Ao 0 1 o

falls under the umbrella of Local Pattern Mining (LPM) [46]: inher- Electronic Health Records (EHR). The attributes (£, ..., fx) are the
ently transparent methods leading to the discovery of interesting heartbeats from the cardiac signal measured by the ECG, referred
subgroups in the data set. Frequent Itemset Mining (FIM) [4] is such to as targets. Notice that partitioning a patient’s ECG into K distinct
a transparent method that aims to discover combinations of items heartbeats poses a nontrivial signal processing task; extensive de-
that occur frequently in the data. Such itemsets are turned into tails on how we approach this task can be found in Section 4. Lastly,
rules in Association Rule Learning (ARL) [4]: if all items on the left- binary AF complication occurrences at L stages (b, ..., b ) are used
hand-side (LHS) of the rule are present in a transaction, often, so are to evaluate subgroups. Specifics are indicated with superscript and
all items on the right-hand-side (RHS). FIM and ARL are unsuper- subscript: patient j with attribute a{n about characteristic m. Table
vised variants of LPM: all items play the same role in the algorithm 1 illustrates the shape our data set takes for a small set of fictional
and can in principle appear on both sides of the arrow. Supervised example patients.

alternatives also exist in LPM: these partition the attributes of a Candidate subgroups are generated by a guided search through
data set in descriptors (LHS) and targets (RHS). Subgroup Discovery a description language D, encompassing several descriptions D € D.
(SD) [6, 25, 31, 57] strives to find subgroups where a single target Mathematically, a description can be any function D : A — {0,1}.
column has an exceptional distribution. Exceptional Model Mining In practice, D is typically limited to conjunctions of conditions
(EMM) [16, 35] generalizes SD to a more complex target space: it on individual descriptors ay,: a description will take a form such
seeks subgroups where some modeling over a target space displays as “age < 25 AND smokes? = no”. Descriptions, in turn, induce
exceptional behavior. subgroups.

2.2.1 Application to Atrial Fibrillation. ARL is used to analyze Definition 3.1 (Subgroup). The subgroup induced by a description
stroke risks [29] and to detect cerebral infarction in patients with AF D is the bag of patients Gp € Q such that

[38]. In the former, AF is included as a descriptor; the latter includes . . .

AF as a population requirement. An instance of SD similarly uses Gp = (pj €Q )D (a{’ afw) = 1)

AF as a descriptor to find subgroups of patients with brain injury
[20]. FIM is applied to identify risk factors for strokes in episodes of
AF [39] and discover improvements in stroke preventive treatments Definition 3.2 (Quality Measure). A quality measure (QM) is a
after AF [23]. They aim to identify patients at risk for strokes out function ¢: D — R assigning a numerical value to description D.
of a population of patients who have or had AF. Lastly, clustering
is used to distinguish various types of AF experienced by patients
[47, 56], finding various risk factors in the population of patients
who all experienced AF.

Candidate subgroups are evaluated through a quality measure ¢.

The QM quantifies the extent to which model behavior in the target
space of subgroup Gp varies from that same behavior across the en-
tire data set Q. Subsequently, the goal of Exceptional Model Mining
(EMM) is to report a list of exceptional subgroups (task definitions
vary: top-q, top-q under diversity constraints, all subgroups passing

3 Preliminaries: the Exceptional Model Mining a significance test, etcetera), discovered in a search through the

Framework space of candidate subgroups (strategies vary: Breadth First Search,
Assume a data set Q, which is a bag of N patients p € Q of the form Depth First Search, Beam Search, etcetera) guided by ¢.
p = (a1, ...apm, 1, ..., I, b1, ..., by ). Here, (ay, ..., apr) are the M de- Data arrives at our doorstep in the form of a data set Q which is
scriptors, taking values from the domain A = an/le Am, where the not immediately ready for deployment of Exceptional Model Min-
product is a Cartesian product and each A, can be any reasonable ing. EMM expects all data to be preprocessed in a flat-table form
domain: integer values if a,, represents age, continuous values if where every column (attribute) contains a single value for every row
am represent some sensor reading, categorical values if a,, repre- (observation), but the hospital delivers the target space #1, ..., fx
sents smoking history, and so on. Collectively, A represents the in the form of an ECG signal to be partitioned into K heartbeats.
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The following two sections describe how we process this data and
convert it into a form suitable for EMM: in Section 4, we convert the
ECG signal into a flat-table data set as common in EMM, process-
ing the heartbeats into numeric and binary columns representing
heartbeat properties; in Section 5, we combine these properties
into AF phenotypes, deriving quality measures that evaluate the
exceptionality of AF phenotypes across subgroups of patients.

4 Cardiac Signal Preprocessing

Recorded signals suffer from distortions and faults that mask the
underlying patterns. Noise in ECGs can be caused by power line
interference, muscle artifact, baseline wander, and human error
[30]. The leads can even be incorrectly secured, leading to inverted
signals. This noise sabotages our analysis and needs to be handled
while keeping the underlying signal intact. We apply several signal
processing steps to overcome such noise.

First, we apply an altered version of NeuroKit ECG inversion
[42, 43]: it checks if a waveform is inverted, and if so, inverts it
back. Their backup check is removed for efficiency benefits.

The remaining signal noise can be categorized into frequency
noise and artifact noise. Frequency noise obstructs patterns in heart
rhythms, interfering with AF phenotypes. This operates at high
frequencies: 50-60 Hz and over 100 Hz [48]. Artifact noise obstructs
the small variations in the ECG signals by creating fluctuations
around the baseline below 1 Hz [36]. Both can be removed by a
filter that cuts off high or low frequencies, respectively.

We test several denoising methods. We implement discrete wavelet
transform methods using wavelets with a curve similar to the
PQRST-complex. The Daubechies3 [7] and Symlet3 [12] wavelets
tend to overfit, leaving noise in the signal. The Biorthogonal4.4
[2] wavelet recreates sinus rhythms, which removes the irregular
AF phenotypes in the ECG. Other filters include the Butterworth
[8] band-pass filter which smooths the signal and lowers the peak
amplitudes. Low-pass filtering tends to over-smooth the peaks leav-
ing them undetectable, and high-pass filtering amplifies the peaks
out of proportion, doing the same for peaks caused by noise. The
Weighted Moving Average (WMA) [49] filter removes noise while
keeping the form of the signal. A combination of Butterworth high-
pass and Gaussian WMA filters proves to be the best. Butterworth
high-pass eliminates baseline wander with a cutoff at 0.75; a value
closest to the frequency of baseline wander, while keeping a buffer
for weaker recordings. Gaussian WMA over ten instances with a
sigma of 20 removes the remaining noise. These settings eliminate
the noise in the signal while keeping its features close to the origi-
nal. The resulting ECG signal contains clear and smooth heartbeats
while keeping the AF phenotypes intact. Remaining recordings
of under 30 seconds are removed: they risk having much noise
compared to the number of features in the signal.

4.1 Distinguishing Arrhythmia Types
We identify ECG characteristics that separate AF episodes from
sinus rhythms and other arrhythmias. These characteristics are
irregular RR-intervals and P-wave absence (cf. Section 2).

A sinus rhythm features a heart rate of 60-100 bpm, PQ-intervals
of 120-200 ms, QRS-complexes of 60—100 ms, and a P-wave duration
of up to 120 ms [15]. Heart arrhythmias are identifiable by variations
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Table 2: The ECG characteristics of the sinus rhythm and
four heart arrhythmias with similar variations in the ECG:
Atrial Fibrillation (AF), Ventricular Fibrillation (VF), Atrial
Flutter (AFl), and Left Bundle Branch Block (LBBB).

Rhythm RR-interval P-wave ToRrs

Sinus regular constant 60-100 ms
AF irregular non-existent < 120 ms
VF irregular AV-dissociation > 120 ms
AFl regular negative saw-tooth < 120 ms
LBBB irregular non-existent > 120 ms

of these characteristics. Table 2 lists four arrhythmias with similar
morphological abnormalities. Ventricular Fibrillation (VF) affects
the heart’s lower chambers; AF affects the upper chambers. In
AF the P-wave is nonexistent; in VF the P-wave is shown to be
independent of the QRS-complex (AV-dissociation). Patients with
Atrial Flutter (AFl) or AF both experience shifts in their heartbeats,
but AFI causes faster heartbeats with regular RR-intervals; these
are highly irregular for AF. Left Bundle Branch Block (LBBB) is a
slower left ventricle, shown by irregular RR-intervals and missing
P-waves, similar to AF. The QRS-duration, Tpgs, is >120 ms for
LBBB; it is <120 ms for AF.

4.2 QRS-complex

The QRS-complex is the main element of a heartbeat in the ECG
signals and will function as the guideline for the detection of the
P-waves of the heartbeat. We implement a NeuroKit method that
uses local maxima to detect the R-peaks of each heartbeat [42, 43].

We compute the heart rate, RR;, at heartbeat i as the distance
between consecutive peaks, and denote the difference between
consecutive intervals as ARR;.

RR; =R; — Rj—1
ARR; = |RR; — RR;_1|

Additional rules exclude impossible heart rhythms and wrongfully
selected R-peaks. This overcomes some of the challenges caused
by the remaining noise and flatlines after signal processing. Most
faulty RR-intervals come from selecting the wrong R-peak, causing
too small intervals. Larger intervals can be caused by AF, but also by
skipping beats and/or other diseases; since we can neither conclude
nor exclude that such occurrences relate to AF, we choose to keep
such intervals unaltered. According to domain experts, the RR-
interval must be at least 400 ms. For smaller intervals, we compute
the distance between both peaks and their previous or consecutive
peak. We assume that the peak with the shortest distance is the
faulty peak, and we remove it.

The Q- and S-peaks in the QRS-complex are necessary to identify
the start and end of the QRS-complex, and the distance between
a P-wave and its following QRS-complex. We incorporate an al-
gorithm from NeuroKit based on the theory of a Wavelet-based
ECG delineator [42, 43]. It does not select the Q- and S-peak of the
first and the last QRS-complex in a recording. Since each recording
includes many heartbeats, this exclusion of the two heartbeats at
the far ends is an acceptable loss.
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4.3 P-waves and F-waves

We limit the segment of one entire heartbeat to the interval between
the end of the QRS-complex, S-peak, and the start of the next QRS-
complex, Q-peak (SQ-interval). We check the validity of said SQ-
intervals using rules: the S-peak must lie before the Q-peak, the next
S-peak cannot lie before the Q-peak, and the SQ-interval duration
must be realistic compared to the average SQ-interval of the patient:
not longer than the average RR-interval. We add denoising filters
to ease the identification of the waves from the remaining noise.
We apply two Gaussian WMA filters: once over ten instances with
a sigma of 20, and then again over 50 instances with a sigma of 25.

With the smooth signal, it is possible to apply a local maxima
search technique. The segment is scaled to the range [0, 1] using
min-max scaling [24, Equation 2]. Each heartbeat is now handled
similarly regardless of external factors that influence the strength
and quality of the recording.

We compute the patient’s average PQ-interval using the selected
R-peaks. The hospital starts measuring ECGs 20 minutes before
the surgery begins, giving us a baseline of clean heartbeats of each
specific patient. To identify the average PQ-interval, we take the
SQ-interval in these first 20 minutes and take the last wave in the
range as the P-wave. All PQ-intervals in these first 20 minutes are
averaged, thereby creating an average PQ-interval which we stretch
a little to create the range in which a P-wave should be found. This
is possible because the PQ-interval is not affected by AF. Ultimately,
binary indicators on P-wave absence follow per heartbeat: P-wave
existence (0), or P-wave absence (1). Three cases are considered:

P-wave existence (0): A wave is detected in the PQ-range for
the patient, and < 3 waves exist in the range.

F-wave occurrences (1): A wave is detected in the PQ-range
and > 3 waves exist in the range.

P-wave absence (1): No wave is detected in the PQ-range.

We include a minimum of three waves instead of one because in
this range, other waves can exist that are regular, and replacement
F-waves always occur in larger multitudes. In addition, we create a
second binary list keeping track of the heartbeats showing F-waves.
Of the three cases mentioned above, the P-wave absence case is
also stored as (0) in this list as no F-waves occur.

5 Incorporating Atrial Fibrillation Phenotypes
in Exceptional Model Mining

To characterize subgroups with exceptionally elevated or decreased
risk of Atrial Fibrillation, we create several updates to the Excep-
tional Model Mining (EMM) [16, 35] framework (cf. Section 2.2)
that allow us to analyze the ECG signals as targets. The patient
characteristics are the descriptors, the extracted ECG features are
the targets, and AF complications serve as evaluators. The model
class is ECG morphology abnormalities in the form of phenotypes.

5.1 Quality Measures

We derive multiple quality measures to assess multiple kinds of
exceptional behavior in ECGs.

5.1.1
we define some statistical functions 6 based on ECG phenotypes
related to the Heart Rate Variability (HRV) and P-waves extracted

Heart Rate Variability, P-wave Absence, F-wave Presence. First,
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in Section 4.1. We implement three measures (identified in AF
detection methods mentioned in Section 2) to find exceptionality
in the HRV: Standard Deviation of all RR-intervals (SDRR), Root
Mean Square of Successive RR-interval Differences (RMSSD) and
Standard Deviation of Successive RR-interval Differences (SDSD).

K-1

1 _
= — _RR)?
Osprr (P) \K-2 ;:1 (RR; - RR)

1 K-2
b 32
K-3 Z (ARR;)

Ormssp (p) = \
i=1

1 K-2
- A 2
<3 Z‘ (ARR; — ARR)
i=

Ospsp (p) = \

Here, K is the number of heartbeats, and RR and ARR are the av-
erage RR-interval and average difference between consecutive RR-
intervals, respectively; p denotes the patient. We also record the
percentage of heartbeats without P-waves, denoted 0p(p), and the
percentage of heartbeats displaying F-waves, denoted 0 (p).

5.1.2  Combining HRV with P-waves or F-waves. The arrhythmias
in Table 2 can be distinguished by a combination of 1) observations
on HRV, and 2) P-wave absence or F-wave presence. The interest
lies in finding cases where the patient experiences high HRV while
either no P-wave is present in the heartbeat or replacement F-
waves occur. Due to the sequential steps of our feature extraction
procedure, directly matching the RR-intervals with the P-waves
and/or F-waves of the same heartbeat is a bad idea. RR-intervals
induce a list of S- and Q-peaks. If unmatched, S- and/or Q-peaks are
filtered until only proper SQ-intervals remain. These then in turn
induce the discovery of P-waves and F-waves. This makes it trivial
to match P-waves and F-waves to the correct SQ-interval duration;
the link with the correct RR-interval duration may be less obvious.
Hence, combining P- and/or F-wave observations with RR-intervals
may mislead, and hence, the following choices for 6 are computed
with the SQ-interval measures in place of the RR-interval.

We adapt SDRR, RMSSD, and SDSD such that they seek the
combination of exceptional SQ-intervals (instead of RR) and either
the absence of P-waves or the presence of F-waves. This leads to
six additional choices for 6.

K-1
Gioso(h) = | > L)+ (50~ 50)?
i=1

) | K=z
Ormssp (P) = \ 3 ; L.(p, i) - (ASQ;)?

K-3 ¢4

K-2
O5psp () = \ ! Z L.(p, i) - (ASQ; — ASQ)?
i=1

Here, * € {P-wave absent, F-wave present}, and 1 is the indicator
function (equals 1 if its subscript clause is true for heartbeat i of
patient p, equals 0 if false). Recall that both the absence of P-waves
and the presence of F-waves are indicators of AF.
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5.1.3  Correcting for Subgroup Size and Precision. If we let the sub-
group search be guided by any of the fs defined in the previous
section, the search strategy will run towards tiny subgroups cover-
ing an insubstantially small part of the data set. This is a common
problem in local pattern mining: without correction for subgroup
size, tiny subgroups will dominate the result set. Several solutions to
this problem exist; we incorporate the entropy (denoted @ef(D), cf.
[16, Section 3.2.1]) of the split between subgroup and complement
as a factor in our quality measure. Having made this correction, the
search strategy discovers substantially larger subgroups, but these
now also include more negatives (patients who didn’t experience
AF). This is not surprising: since we look at recorded signals be-
fore AF, preceding phenotypes are more subtle. To enable finding
weaker phenotypes, we incorporate precision (denoted ¢pr (D), cf.
[19, Section 4.3]) as a factor in our quality measure. This encourages
True Positives (TP) over False Positives (FP).

5.1.4 Bringing it All Together. For any of the eleven s from Sec-
tions 5.1.1 and 5.1.2, we can compute its average 0% for any subset
X € Q. We derive the phenotype-related ¢pheno (D) = 660 — 02 Fi-
nally, we create a compound QM that rewards a subgroup if it scores
high on all of the phenotype, entropy, and precision components.

@(D) = ¢ef(D) - (Ppr(D) ' (Ppheno(D)

5.2 Generating Candidate Subgroups

We employ an existing search strategy for supervised LPM: beam
search [16, Algorithm 1]. Candidate subgroups are generated in a
level-wise, general-to-specific manner. On the first level, we loop
over the descriptors, generating all sensible single conditions on
single attributes. Evaluating them with ¢, we keep a preset number
w (the beam width) of the best-scoring candidates as the level-1
beam. We generate candidates for each subsequent level i by looping
over the subgroups in the level-(i — 1) beam, and refining! them
by conjoining additional conditions, generated by looping over the
attributes; after candidate generation, the best w are kept as the
level-i beam. Beam search terminates after a predefined maximum
level d (the search depth); the top-q subgroups encountered along
the way are reported.

5.3 Anti-Redundancy Methods

Any EMM search strategy runs the risk of returning a top-q of
very similar, exceptional subgroups: near copies of very exceptional
subgroups are likely also very exceptional. This may drown out
other subgroups that are also exceptional. To tackle this problem,
the EMM literature contains several anti-redundancy methods.

We remove similarity redundancy: identical copies of descrip-
tions whose conjuncts appear in a different order. We also re-
move generalization redundancy through description-based selec-
tion [34, 53]: if two overlapping descriptions, e.g. “age < 50” and
“age < 50 AND smokes = no”, have the same quality score, the more
general description is kept.

lusing the refinement operator 1 from [16, Section 4.1], parameterized with the 1bca

numeric refinement strategy from [45], and augmented with the ordinal refinement
operator from [53].
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Table 3: The number and percentage of patients in Q that
experienced the various types of AF (groups overlap; unfor-
tunate patients may experience AF in multiple stages).

AF Complication identified

Stages Yes No
before 6 (2.6%) 224
during 6 (2.6%) 224
after 75 (32.6%) 155
future 1 (0.4%) 229
AF in general 87 (37.8%) 143

6 Experiments

Our main experiments involve proprietary hospital data. For repro-
ducibility purposes, we repeat the experiment on a public data set;
details and results can be found in the Supplementary Material at
[9, Section 2]. Source code and more material are publicly available
on GitHub?; our implementation builds upon the pseudocode from
[16, Algorithm 1] and the implementation from [53].

6.1 Data

The data set consists of 230 patients who have undergone cardiac
surgery. In total, 186 men (80.9%) and 44 women (19.1%) are in-
cluded, risking bias. However, men are more prone to heart failure,
thus needing cardiac surgery, than women [17]: it is a natural conse-
quence unlikely to affect our research. Our data set includes Atrial
Fibrillation (AF) complications experienced before, during, and/or
after an operation, summarized in Table 3. Postoperative AF occurs
in the first four weeks after surgery [44]; any AF detected later than
these four weeks is considered an unrelated consequence.

The data set includes lead I ECG recordings, Electronic Health
Records (EHR), and AF complication indicators. Due to the nature of
the data, each entry is assumed to be a new patient; for all practical
purposes, this is close enough to the truth such that the probability
becomes negligible that violations of this assumption substantially
affect the results of our analysis.

After transforming the EHR with aggregation and one-hot en-
coding, we end up with 247 medical characteristics as descriptors.
Subsequent filtering based on domain expertise is undesired due to
the exploratory nature of beam search.

6.2 Experimental Setup

The beam search parameters are carefully chosen to combine a wide
exploration of the descriptor space while keeping results clinically
relevant. The search depth d = 3 ensures transparency and compre-
hensibility of the resulting descriptions; exploring conjunctions of
more descriptors would be easily computationally feasible, but the
resulting subgroups would be harder to interpret and more likely
to be false discoveries. The beam width w = 50 allows for over
25% of the descriptors to participate in the level-1 beam, and keeps
many potentially interesting descriptions as long as possible; we
sacrifice runtime for a wider exploration of the descriptor space.
The top-q descriptions to be returned is set to g = 15. Finally, to

Zhttps://github.com/liekevandenbiggelaar/EAFM.
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stimulate generality in the evidence of exceptional behavior, we set
the minimum coverage of any subgroup to 5% of |Q|.

We judge the validity and medical relevance of our discovered
subgroups by evaluating the content with domain experts. We
round all quality scores ¢ to two decimals. Under this choice, we
have observed identical qualities only for subgroups covering the
exact same set of patients, where it is to be expected.

6.3 Results

Table 4 displays summary statistics of the results. A good subgroup
has high exceptionality of the phenotype and a high percentage of
AF. All experiments find more patients with AF than without, and
a high exceptionality in phenotypes. Experiments on individual
phenotypes (# 1-5) yield an average AF rate above 70% (while the
AF rate on Q is 37.8%). However, they (except for 0f) score lower
on the phenotype exceptionality than most combined phenotypes
(# 6-11, except for eéJDSQ and 9513513)1 those find subgroups whose
phenotype is over 2.5 times more exceptional than the population.
The commonality of variations in phenotypes could cause this: as
many patients have one of the variational properties, the preci-
sion factor @p; has a greater effect. Hence, Experiments 1-5 find
descriptions of patients who often have AF, but not necessarily
exceptional ECG phenotypes, as was the objective. Experiments
6-11 find subgroups encompassing both ECG phenotypes differing
from Q and the majority of AF patients. Some episodes of AF are
likely missed due to the way ECG monitoring is currently handled;
improvements in this monitoring and postprocessing of the ECG
signal are promising avenues of future work in order to also cover
the remaining AF patients.

The remainder of this section will focus on the experiments with
combined phenotypes only. Although Experiment 5 on F-waves
seems interesting from the discussion in the previous paragraph,
extracting these waves from the ECG is more an art than an exact
science; manual choices will influence results. The use of only this
phenotype will likely lead to biased results focusing on outlier cases.
Therefore, we include F-waves only in combination with high heart
rate variability.

The full top-15 subgroups reported by beam search for each of
the eleven experiments are listed in the Supplementary Material
[9, Section 1]. We discussed and postprocessed the medically most
relevant findings with medical doctors at the hospital; the remainder
of this section presents the results of that discussion, involving

experiments with 9§DSD’ 9§MMSD, and QgDSD'
6.3.1 Subgroups Discovered with 9? psp- The 9£DSD phenotype seeks

patients with varying heart rate related to the standard deviation of
successive SQ-interval differences, and a high percentage of missing
P-waves. The top chart in Figure 2 shows that four subgroups have
a low percentage of AF and five subgroups have low phenotype
exceptionality. Leaving out one clinically uninteresting subgroup,
Table 5 lists the five remaining subgroups.

All subgroups select patients with acidic blood (normal/high
standard bicarbonate, low anion gap, and high chloride). Three select
patients with blood clotting problems (high prothrombin time), who
are likely to be assisted by the heart-lung machine. A combination
of these two occurs three times. In two other situations, acidic blood
is combined with patients with prediabetes (normal/high glucose).
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Table 4: Summary statistics of the eleven experiments: ex-
periment number, phenotype, average ¢peno of the top-15
subgroups, average phenotype over the full data set, pheno-
type exceptionality factor, and percentage of patients in the
subgroups that display AF (for the full data set: 37.8%).

‘Ppheno

# Phenotype @pheno 62 50 % AF
1 6spsp 10338 7538 137  0.71
2 OrMssD 14138 9392 151  0.71
3 OspRR 113.38 8163 139 0.73
4 6p 5048  30.38 1.66  0.71
5 6Of 1.88 0.54 3.48 0.70
P
6 9%351) 490.56 183.52  2.67 0.60
7 G%MSSD 752.20 277.839 2.71  0.58
8 Q%DSQ 656.41 396.64 1.65  0.57
9 G%DSD 410.66 134.76  3.05  0.59
10 e%MSSD 752.20 277.839 2.71  0.58
11 OSDSQ 657.03  426.43 1.54  0.58

The risk groups that emerge from this experiment are patients
with: (A) acidic blood and blood clotting problems (#1, #9, #11); (B)
acidic blood and assistance by the heart-lung machine (#1, #9, #11);
(C) acidic blood and prediabetes (#5, #6). These results are partially
supported by existing literature. AF risk is elevated in patients
with a low anion gap [22], and prediabetes [27]. Furthermore, low
chloride levels increase the risk of AF, but high chloride levels, as
in our subgroups, show a risk similar to regular levels [21].

6.3.2  Subgroups Discovered with 95 Mssp- 1he HIIQJMSSD phenotype

seeks patients with varying heart rate related to the root mean
square of successive RR-interval differences and a high percentage
of missing P-waves. The middle chart in Figure 2 shows that five
subgroups have a low percentage of AF and four subgroups have
low phenotype exceptionality. Four other subgroups were already
discovered with QéDDsD' Table 5 lists the two remaining subgroups.

The one new subgroup strengthens our hypothesis from the
9§DSD experiment, on patients combining acidic blood (high chlo-
ride) with either blood clotting problems (high prothrombin time) or
heart-lung machine assistance. The other new subgroup suggests
exceptionality in patients receiving antibiotics (cefazolin treatment).

The emerging risk groups are patients with: (A) blood clotting
problems and antibiotics administration in the form of cefazolin (#5);
(B) acidic blood and blood clotting problems (#13); (C) acidic blood
and assistance by the heart-lung machine (#13). The administration
of antibiotics has been associated with an increased risk of AF
[3], but cefazolin is not yet mentioned in the list of antibiotics
tested. As in the 6% experiment, high chloride is named, which

SDSD
contraindicates results from existing literature [21].

6.3.3 Subgroups Discovered with 9§DS p- The egDSD phenotype seeks

patients with varying heart rate related to standard deviation of
successive SQ-interval differences and a high percentage of re-
placement F-waves. The bottom chart in Figure 2 shows that four
subgroups have a low AF percentage and four have low phenotype
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Table 5: Subgroups discovered when seeking exceptional phenotypes 0y,
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P QF

0 SDSD*

o and Raw values are postprocessed

P
RMSS

into qualitative statements, guided by medical professionals and medical literature.

Phenotype # Description

9§D5D 1 high prothrombin time A normal/high standard bicarbonate A no thrombin treatment
egDSD 5 low anion gap A normal/high glucose A no minimally invasive aortic valve replacement
QéDDSD 6 low anion gap A normal/high glucose A sex is male

egDSD 9 high prothrombin time A normal/high standard bicarbonate A high chloride

QéDDSD 11 high prothrombin time A normal/high standard bicarbonate A normal sodium

9§MSSD 5 high prothrombin time A cefazolin treatment A normal FiO2

GIRJMSSD 13 high prothrombin time A little blood loss A high chloride

9§DSD 11 high prothrombin time A Ringer’s lactate treatment A normal FiO2

OgDSD 14 high prothrombin time A normal/high standard bicarbonate A normal potassium

exceptionality. Five other subgroups were already discovered with
9§DSD or 9§MSSD. Table 5 lists the two remaining subgroups.

Again, the overlapping subgroups complement our previous
findings. One subgroup also includes patients with acidic blood
(normal/high standard bicarbonate) and blood clotting problems
(high prothrombin time). The remaining subgroup includes patients
with blood clotting problems and a low blood volume/blood pres-
sure (Ringer’s lactate treatment).

The emerging risk groups are patients with: (A) blood clotting
problems and low blood volume/blood pressure (#11); (B) acidic
blood and blood clotting problems (#14); (C) acidic blood and assis-
tance by the heart-lung machine (#14). Although previous research
has found a higher prevalence of AF after the administration of
Ringer’s lactate [52], this treatment had not yet been associated
with increased risk.

7 Conclusions

Cardiac surgery puts patients at risk of Atrial Fibrillation (AF) [44].
This heart arrhythmia is the leading cardiac cause of strokes [18].
The consequences can be avoided by preventive treatment, if we can
see coming that AF is likely to occur. Current practice is reactive:
medical professionals can only act when the episode is already
occurring, signaled by an alarm based on unknown factors. Instead,
we provide an instance of the Exceptional Model Mining (EMM) [16,
35] framework, discovering transparent and actionable subgroups
of patients at a higher risk of AF. We do so by processing ECG
data from patients into AF-related phenotypes, and defining quality
measures that reward subgroups combining exceptional phenotype
behavior, a high percentage of AF occurrence, and a substantial
size. The subgroups found are hypothesized to have a higher risk
of developing AF after surgery, and our advice to the hospital is to
give preventive medications to patients who match the descriptions
found. As we work with sensitive data, ethical considerations should
be taken into account. Therefore, our research should be regarded as
exploratory rather than confirming. Ideally, the knowledge derived
from this paper should be confirmed in follow-up medical studies.
In that sense, the contributions of this paper are a step towards
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stratified medicine, where EMM automatically discovers hypotheses
for interesting strata to explore further.

The method is in deployment at the Catharina Hospital in Eind-
hoven, the Netherlands. We conduct several experiments to select
the best method for the deployment. All methods discover excep-
tional subgroups in terms of phenotypes and AF. Methods relying
solely on heart rate variability (HRV) measurements, P-wave ab-
sence, or F-wave presence deliver subgroups with the strongest
AF incidence rate. Still, the phenotypes are not that different from
the overall patient population in our data set. Methods relying on
combinations of on the one hand HRV and on the other hand either
P-wave absence or F-wave presence, have a slightly less strong
but still substantially elevated AF incidence rate, combined with
strongly deviating phenotypes (cf. Table 4). Some of the subgroups
we discover are defined by characteristics associated with an in-
creased risk of AF in existing literature, thereby confirming the
validity of our findings. Other subgroups we discover represent
new hypotheses in this area for AF risk groups. The advice derived
from the model is to administer preventive medication to prevent
AF from occurring in the risk groups found and execute follow-up
medical studies on the relationship of the following characteristics
with the risk of AF: 1) patients assisted by the heart-lung machine
that also have acidic blood; 2) patients with high chloride levels; 3)
patients with blood clotting problems that need cefazolin admission
to prevent infection; 4) patients with blood clotting problems that
need Ringer’s lactate to overcome low blood volume/pressure.

7.1 Future Work

Our experiments run on data from one of the twelve leads for
measuring ECG signals. The cardiac signal preprocessing of Section
4 relies on this choice: including other leads harms the current
procedure (interference, more noise), which would require more
complex preprocessing steps. Since intelligently combining data
from multiple leads holds the potential to provide more subtle
information on the heart health of the patient, including more leads
is an avenue to be explored in future work.
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Figure 2: A visual representation of the subgroups found
with the three selected experiments. The bar height shows
the percentage of patients with AF, while color indicates
phenotype differences from the population average.

Our method is in deployment on the data from a single hospital,
the Catharina Hospital in Eindhoven, the Netherlands. The method
ought to be deployable more generally, on data from other hospitals
in other locations. The only requirement for such deployment to
take place, is that the hospital must possess data that comes in the
shape as illustrated in Table 1: all three modalities of this data (EHR
descriptors, ECG targets, AF complication occurrence annotations)
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must be present. We are open to collaborations with hospitals where
such data (with all three modalities) exists. However, we made our
code publicly available deliberately: if such a hospital would decide
to deploy our method without our direct involvement, this would
of course also be a most welcome development.

Finally, the deployment of EMM on the data from the Catharina
Hospital resulted in the discovery of subgroups of patients at an
elevated AF risk. Some of these were known risk groups, others form
new hypotheses with the potential for better medical intervention in
the future. We list four specific subgroups that represent candidates
for medical follow-up studies in the paragraph preceding Section
7.1. Meanwhile, we are setting up a clinical follow-up study on
whether the administration of Alfentanil (which occurs in multiple
discovered subgroups across multiple AF phenotypes; cf. [9, Tables
1-11]) can be replaced by other opiates including but not limited
to Remifentanil.
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