Mining Sequences with Exceptional Transition Behaviour of Varying Order

We find exceptional subgroups with a Markov chain model with more (or less) parameters than the model estimated on the entire dataset, by using quality measures based on information-theoretic scoring functions.

1. A record:

 | Descriptors: attribute-value pairs | Target: sequences |

2. Model class:

 ![Diagram](image1)

 Figure 1 In a first order Markov chain, the current value predicts the next value.

3. Quality measure:

 \[\Phi_{EMM-AIC} = 2\mathcal{L}(P(SG|\theta^SG)) - 2K^SG - 2\mathcal{L}(P(SG|\theta^\Omega)) + 2K^\Omega \]

Synthetic Data Experiment

Simulation: A ground truth subgroup of varying order. All other sequences a first order chain.

- 50
- 100
- 25%
- 20
- 200
- 1,2,3,4
- 2,5,10

State-space: 2 5 10

![Figure 3](image2)

Figure 3 Percentage of repetitions where order of the true subgroup is found, for varying state-space.

Real-World Data Experiment

Blood glucose

Overall data. A second order Markov chain.

Exceptional subgroup. A first order Markov chain.

- 21.3 – 35.7
- ≤20 years
- HbA1c low

![Figure 4](image3)

Figure 4 First order transition probability matrix of the exceptional subgroup.

Low HbA1c gives stable blood glucose sequences

r.m.schouten@tue.nl