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Abstract. Causal effects vary across subgroups in a population. This is
especially true for treatment effects in the medical setting where context
information like family history, medical history and symptom presentation
influence and explain differences between individuals. Estimating these
local, causal treatment effects is not straightforward, especially since the
covariate (context) information may i) interact with the outcome and/or
treatment variable, ii) be measured at a lower hierarchical level than the
level of the individual, and iii) contain high dimensional observations. In
this paper, we perform two synthetic data experiments to further analyze
and provide insights into the behavior of two types of non-confounding
covariates: effect modifiers influence the treatment effect and prognostic
factors influence the outcome variable, but not the treatment effect.
We temporarily disregard the fundamental problem of causal inference
that factual and counterfactual outcomes cannot be observed together,
and generate synthetic data where treatment assignment variable W is
considered a time-variant variable: the outcome value is observed for
every occasion (treatment) for every patient. Consequently, we obtain a
hierarchical dataset where outcomes (and possibly, covariates) reside at a
lower hierarchical level than the treatment effects, which reside at the level
of the individual. Our findings from controlled experiments provide 1) a
demonstration of existing knowledge that prognostic factors reduce left-
over variance and improve precision, whereas effect modifiers determine
and explain individual-specific deviations, and 2) an additional insight
that in order to unravel population heterogeneity, aggregations of lower-
level, high-dimensional observations should align with (possibly unknown)
expectations about whether these observations display prognostic or effect
modification behavior.

Keywords: Prognostic Factors - Effect Modifiers - Individual Treatment
Effects - Multilevel Data - Synthetic Data Study

1 Introduction

People differ, not only in physical appearance but in personality, cultural back-
ground, abilities and interests, as well as in cognitive, emotional and social
behavior [RIT4J21T]. This is particularly apparent in the medical setting, where
context information like family history, medical history and symptom presenta-
tion influence and explain differences between individuals, including differences in
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Fig. 1: Causal diagrams with three variables: outcome Y, treatment assignment W and
covariate Z (a) no structural restrictions; Z can be a prognostic factor, effect modifier
or both (b-d) the causal relations are assumed to be linear (b) Z is a prognostic factor
(¢c) Z is an effect modifier, diagram cf. [37] (d) Z is an effect modifier, a variation of the
diagram cf. [30].

causal treatment effects [4TJI0]. Considering such patient population heterogene-
ity, estimating Local or Conditional Average Treatment Effects (LATE, CATE)
[A1J48)22] for certain subgroups in the population is to be preferred over esti-
mating an Average Treatment Effect (ATE) that aggregates over all individuals.
Recent advances in Machine Learning (ML) move even further and estimate
Individual Treatment Effect (ITE) [43/4420/475/17].

A complicating factor in estimating treatment effects is the possibly nested,
non-IID structure of observed covariate information. For instance, blood sampling
tests may be repeated for each hospital visit, or blood glucose measurements are
continuously taken using a FreeStyle Libre sensor, an intermittently continuous
glucose monitoring (ICGM) sensor [12[7]. In this paper, we consider three par-
ticular aspects of observed covariate information that potentially influence the
estimation of causal treatment effects: i) covariates may interact with the outcome
variable and/or treatment assignment variable, ii) covariate values may be nested,
that is, they may be measured at a lower hierarchical level than the level of the
individual, and iii) covariate values may be observed with high dimensionality.

Learning causal representations without having access to ground-truth knowl-
edge about causal relationships between variables, that is, without knowing the
causal diagram, is non-trivial. Solving this problem requires, at the very least, a
thorough understanding of how causal variables behave in a controlled setting.
Therefore, this paper aims to analyze and provide insights into the behavior of
two types of non-confounding covariates.

On the one hand, effect modifiers influence the treatment effect (but not the
treatment assignment) [51]. In the medical domain, the same concept is referred to
as Heterogeneity of Treatment Effect (HTE) and defined as “non-random variation
in the magnitude or direction of a treatment effect across levels of a covariate
against a clinical outcome” [22, p.35]. On the other hand, we consider prognostic
factors, which are variables that influence the outcome, but not the treatment
effect [21] (nor the treatment assignment; effect modifiers and prognostic factors
are not confounders). Both effect modifiers and prognostic factors are abundant
in any observational dataset.



On prognostic factors and effect modifiers 3

Even if we assume that we know the causal diagram, in the absence of
restrictions on the structure of the causal relationships, we cannot distinguish
effect modifiers from prognostic factors [36/5146] (Figure E| Alternatively, in
this paper, we assume that the causal relations are linearly structured. Then, the
causal diagrams appear slightly different depending on whether Z is a prognostic
factor (Figure or an effect modifier (Figure [Lc|cf. [37], and Figure [1d|cf. [30]).
Accordingly, the relation between treatment assignment variable W, covariate Z
and outcome Y is modeled as

Y =7W +~Z +6WZ, (1)

where parameter 7 represents the Average Treatment Effect (ATE) in the pop-
ulation, Z induces variation in the outcome variable Y through + (prognostic
effect) and ¢ quantifies the difference between CATE and 7 for certain subgroups
in the population (effect modification). If 4 and § are both significantly different
from 0, covariate Z performs both roles simultaneously.

The aim of this paper is to provide insights into the prognostic and effect
modification behavior of covariate Z. We do this in a controlled setting, where we
temporarily disregard the fundamental problem of causal inference that factual
and counterfactual outcomes cannot be observed together [16]E| and generate
synthetic data where treatment assignment variable W is a time-variant variable:
the outcome value is observed for every occasion (treatment) for every patient.
Consequently, we obtain a nested, hierarchical data structure where outcomes
(and covariates) reside at a lower hierarchical level than the level of the individual.
We then study how population heterogeneity is influenced by whether covariate
Z is a prognostic factor or an effect modifier.

The rest of this paper is structured as follows. In Section [2} we provide back-
ground information and notation for hierarchical data. We extensively introduce
the techniques used in our experiments, that is, in Section [3| we assume covariate
Z is an individual-level variable and we analyze three types of ITE distributions
using within-subjects ANalysis Of VAriance (wANOVA), whereas in Section |4| Z
is a time-variant variable and we perform a local pattern mining method called
Subgroup Discovery (SD) [I5/9] to unravel patient population heterogeneity in
an unsupervised setting. Section [5| concludes.

2 Background

2.1 Preliminaries

First, consider D = {x;}!" ; to be a sample of n IID draws from X = (W, Z,Y)
with state space X = W x Z x Y such that a sample is a tuple x; = (w;, 2;, y;)-

! In Figure we do not display the noise variables and assume they are jointly
independent; the models satisfy the causal Markov condition [36].

2 At the same time, we stay close to reality by making assumptions such as the Stable
Unit Treatment Value Assumption (SUTVA) [42J19], no hidden confounders and
overlap (i.e., positivity) [5].
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Variable Y is a numerical outcome with ) € R. The state spaces of treatment
assignment variable W and covariate Z are provided in Sections [3.1] and [.1]
respectively. Note that in the traditional causal setting, every individual i €
{1,2,...,n} is assigned to one out of k treatment groups. Often, we set W € {0,1}
(k = 2); then {x; € D | w; = 1} reflects the treatment group and {x; € D | w; =
0} the control group.

Next, consider that for a individual ¢ we draw repeated measurements from X
(e.g., repeated blood tests or measuring heart rate over a period of time), denoted
as a tuple (x},...,x!,...,x7). These measurements are non-IID if there exists
some form of correlation between measurement xt and x:™*, or if the observed
distribution p(X;) differs from p(X;) (for individuals ¢,j € {1,2,...,n}). In the
real world, such correlation structure naturally exists. Consequently, the resulting
dataset has a hierarchical or multilevel structure where there exist multiple entity
types where the measurements of the entities of one type (here, entity type time
with T" entities per individual) are nested in the entities of another type (here,
entity type individual with n entities in the dataset) [18]E|

In this paper, we create temporal structure by adopting a slightly unusual
scenario where the treatment assignment value is set to be the time indicator:
w! « t. Essentially, we create a hypothetical scenario where for all individuals,
we observe both factual and counterfactual outcomes. In other words, we model
the effect of treatment as time-varying effectsﬁ This allows us to study the
interaction between Z and W from a within-subjects perspective; an effect that
takes place at a lower hierarchical level than the desired level of inference.

2.2 ANalysis Of VAriance

In Section |3, we use a within-subjects ANalysis Of VAriance (wANOVA) to
investigate the variance distributions in outcome variable Y. An ANOVA is
a statistical model that divides variance in an outcome variable over one or
multiple components [50]. Depending on the data structure and research question,
we distinguish a between-subjects ANOVA (bANOVA) from a wANOVA. A
bANOVA divides the variance in the outcome variable between categories of a
categorical variable G (an effect of the presence of groups) and a within-subjects
variance that cannot be further explained and is therefore considered left-over
or error variance. In a wANOVA, the grouping variable G is replaced with a
time variable T'. The variance in the outcome variable is then divided between
an effect of time, an effect of systematic individual differences and a left-over
variance.

3 The number of repeated measurements may vary between individuals. In addition,
some variables may be measured only once per individual; others could be repeatedly
sampled with varying counts and intervals; the data could be formatted as a flat
table, or as a relational database.

4 We temporarily disregard the fundamental problem of causal inference [16], but still
assume SUTVA [19]. We do not belief that time influences the treatment effect; we
use time to model the treatment effect.
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Fig. 2: Variance distribution in a numerical outcome variable for three ANOVA models.
SS stands for Sum of Squares. (a) one-way between-subjects ANOVA (b) one-way
within-subjects ANOVA (c) mixed between-within-subjects ANOVA.

To be specific, a between-subjects ANOVA (bANOVA) divides the variance
in the outcome variable between an effect of group effect of categorical variable G
and a within-subjects variance that cannot be further explained and is therefore
considered left-over or error variance (Figure [2a). The total variance in the
outcome variable, expressed in terms of Sum of Squares (SS), is

SSiot = Y i(m — GM)?, (2)

ke{0,1} i=1

where GM = + 2oke{o.1} >k Vi is the Grand Mean. Any systematic
difference between the groups is contained in the variance component

SSa=mx Y, (Yi—GM), 3)
ke{0,1}

where Y, = rle Sk, Vi is the mean of group k. Within a group, there are
no variables that explain any variance and the left-over variance is

SSs@y = Y, Y (Y —Yi) (4)

ke{0,1} =1

A bANOVA evaluates whether there is a difference in outcome Y between the
groups, by comparing SS¢ with SSg(). While taking the degrees of freedom
into account; if the former is substantially larger than the latter, differences in
outcome between subjects can be explained by the group assignment. Then, the
treatment has an effect.

Figure [2D] displays the variance components in a within-subjects ANOVA
(wANOVA). In a wANOVA, the grouping variable G is replaced with a time
variable T', which indicates the time at which value Y;; was measured. Here, the
idea is to follow subjects through time and Yj; is known for a subject i for all
te{0,1,...,T —1}.
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In a wANOVA, the variance in the outcome variable is divided between
an effect of time, an effect of systematic individual differences and a left-over
variance. Compared to a bANOVA, the effect of time is calculated similar as the
group effect in Equation (3)).

In contrast to a bANOVA, the within-subjects variance in a wANOVA can
be further explained by a subject effect,

inZY GM)? (5)

t=0 i=1

where Y; 1 tT 01 Y;: is a subject’s average over the T"— 1 measurement
occasions. Any further unexplained variance can be calculated by subtracting

Equation from Equation 7 or by

T—1 ng

SSsr =3 > (Yu—-Y;-Y;+GM)>. (6)

t=0 i=1

Note that by writing ST in the subscript in SSgr, we indicate that the
left-over variance represents an interaction between subjects and time. In other
words, any variance that cannot explained by a main effect of time, or a main
effect of subject, is due to an interaction between these variables. In the context
of linear relations, another word for interaction is effect modification.

It is important to realize that in a wANOVA, it is likely that the variance
SSst < SSs(r). Consequently, it may be easier to find evidence for a main effect
of time in a wANOVA than it is in a bANOVA, because SSt is compared against
a smaller remainder than SS¢g. It does require some degrees of freedom though.

Furthermore, in a one-way wANOVA, there is no grouping variable other
than time. Therefore, when one performs an RCT with repeatedly measured
outcome values, the analysis to go to is a mixed between-within-subjects ANOVA
(bwANOVA) rather than a wANOVA. A bwANOVA is shown in Figure

In this paper, we simulate the hypothetical situation that we know the factual
and counterfactual outcomes. This allows us specify certain ITE distributions
and to analyze variance components in a wANOVA. To translate our findings to
a real RCT where covariate information is be used to explain variation in the
data, one can use a two-way between-subjects ANOVA. There, a covariate is
added as an extra grouping variable similarly like S in a wANOVA [50].

2.3 Local Pattern Mining

The concept of global models that explain most of the instances in the data
is opposed with that of local models or patterns [I3I35]. Where global models
tend to find the obvious patterns in the data, local patterns cover small parts
of the data that deviate from the population distribution and display some
internal structure; we call them subgroups [23/4924125]3/9]. In Section [4] we use
Local Pattern Mining (LPM) techniques to discover 1) subgroups of individuals
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with exceptionally high outcome values and 2) subgroups of individuals with an
exceptional increase in outcome over time (i.e., high treatment effects). We expect
that prognostic factors are valuable for discovering the first type of subgroups,
whereas effect modifiers are needed to discover the second type.

The next paragraphs provide more background information on two types of
LPM frameworks: Subgroup Discovery (SD) [23/49/24/TTI26] and Exceptional
Model Mining (EMM) [28/9]. Both frameworks aim to discover subgroups in
the dataset that somehow behave exceptionally. Traditionally, SD focuses on
exceptionality defined over 1 target attributes, whereas EMM evaluates a model
fitted to > 2 target attributes.

Traditionally, EMM assumes a dataset {2 to be a bag of n records r € {2 of
the form

r=(a1,...,a5,01,. .., lm), (7)
where k and m are positive integers [9]. In EMM, we call aq, .. ., ax the descriptive
attributes or descriptors of r, and (1, ..., ¥, the target attributes or targets of r.

For SD, m = 1, whereas for EMM, typically m > 2.

The descriptive attributes are used to describe and discover subgroups of cases.
A subgroup is defined using descriptions; a description is a Boolean function
D : A — {0,1} which covers a record r* if and only if D(ai,...,a}) = 1. Here, A
is the collective domain from which the full set of descriptors is taken; a Cartesian
product of the domains of each individual descriptor. Consequently, a subgroup
is defined as follows:

Definition 1 (Subgroup cf. [9]). A subgroup corresponding to description D
is the bag of records Gp C 2 that D covers:

GD:{riEQ | D(a’i,...,a}%):l}.

The complement contains all records that are not covered; G¢ = 2\ Gp.

In EMM, the choice of description language D is free, though generally we
let the description be a conjunction of selection conditions over the descriptors,
where condition sel; is a restriction on the domain A; of the respective attribute
a;. For instance, for discrete variables the selector may be an attribute-value pair
(a; = v); for continuous variables it could be a range of values (wq < a; < ws)
[9U33145].

We aim to discover the descriptions for which the subgroups display excep-
tional behavior on a target model, fitted to a set of target attributes. Formally,
we quantify exceptionality using a quality or interestingness measure. A quality
measure quantifies the difference between behavior in the subgroup and some
reference behavior, usually the the subgroup’s complement:

Definition 2 (Quality Measure cf. [9]). A quality measure is a function
© : D — R that assigns a numerical value to a description D.

In this paper, we follow a SD scenario where outcome variable Y is our target
attribute. We evaluate two types of exceptionalities: one where we aim to discover
subgroups of individuals with high outcome values, and one where we aim to
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discover subgroups of individuals with a high increase in outcome values (from
t=0tot= (T —1). The proposed quality measure is given in Section

The task of SD and EMM is to effectively search through the space of
candidate subgroups to find the top-q best-scoring subgroups [9]. Many search
algorithms exist; some of them developed for particular kinds of exceptional
behavior [29J6/4U3T], others for particular data types [34J32/40127]. Nevertheless,
most work on EMM considers the search space to be a general-to-specific search
lattice and use a conjunction of selection conditions as description language.
Then, the core difference between most search algorithms is the manner in which
they traverse the search lattice; given a (candidate) subgroup description, the
selection of subgroup members is comparable for many search algorithms. In this
paper, we choose beam search cf. Algorithm 1 in [9] as our search algorithm of
choice, with the 1bca discretization strategy [33] for numerical attributes with
b = 4 quantiles, search width w = 20 and search depth d = 3.

3 Experiment 1: Z is an individual-level covariate

In this experiment, we demonstrate how varying underlying ITE distributions
affect the variance structure of an outcome variable Y. We demonstrate that
averaging over individuals (as is done in reality, outside the hypothetical bubble
of this experiment) is equivalent to assuming that none of the left-over variation
can be explained by systematic differences between individuals.

3.1 Experimental setup

We generate synthetic data with a hierarchical structure as described in Section
We set n = 100, T' = 2, and w! «+ ¢ for all i € {1,2,...,n} and t € {0,1}.
We then sample outcome values y! = mo; + m1;w! + el. Error el ~ N(0,02) is
normally distributed (and jointly independent). To be precise, we sample values
for y! from N (p!,0t) with p° = mo; =5, ut = pu® +m; = 7.5 and 0% = 0! = 2.
Consequently, the ATE is fixed to 2.5.

Next, we re-order the values such that we create three possible ITE distri-
butions as depicted in Figure 3] In Figure all patients have the same ITE
and that ITE equals the ATE. Remark that there exists variation in Y, but that
variation does not induce differences in treatment effects between individuals. In
the second scenario, the ITEs all cross through the Grand Mean (GM) (Figure
. Here, an individual’s ITE is as opposite to the ATE as possible. Third, for
every individual we randomly sample one of the two outcome values as factual
outcome, and we set the counterfactual to the group mean of the counterfactual
group, denoted with 7° for the control group and 7' for the treatment group.
Thus, if we randomly sample y{=! for individual i, then value y? < 7°, and similar
for t = 0. The resulting ITE distribution is visualized in Figure Remark that
in all three scenarios, the ATE, GM, and group means do not change; we only
change the underlying ITE distributions.
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We deliberately write the coefficients as my; and 71; to indicate that the
sampled values occur at the lowest hierarchical level (the time level); these effects
can be further specified using second-level attributes, for instance a potential
covariate Z. Then, mo; = Boo + Bo12:; + poi and m1; = Bio + P112i + i (error
normally distributed and jointly independent). Integrating these higher level
equations into the lowest level equation gives:

vl = Boo + Bo1zi + Brow] + Briwlz + pw + puoi + €. (8)

Consequently, scenario (a) equals the situation that 891 # 0 and 817 =0: Z is a
prognostic factor. In scenario (b), Z is an effect modifier and Sp; = 0 and 511 # 0.
In scenario (c¢), Z is an effect modifier with an additional prognostic component

(Bor # 0 and 11 # 0).

3.2 Experimental results

Inspection with bANOVA and wANOVA gives results as presented in Table [4]
Here, the left-most column shows the traditional bANOVA output and the three
right columns the wANOVA results. We see that the total variance SSio in the
outcome variable (1046) can be explained by an effect of group (219). Based on
a statistical test, we would reject the null hypothesis that there is no effect of
treatment with F'(1,198) = 52.44, p < 0.001.

Table {] furthermore shows that in scenario (a), 814 of the 827 within-subjects
variance can be explained by an effect of subject. This demonstrates the existence
of systematic differences between subjects (individuals). In fact, in scenario (a),
the only difference between subjects is given by the distance of their individual
average outcome (7,) and the GM; no further variance is to be explained.

In contrast, in scenario (b), almost none of the within-subjects variance can
be explained by a subject effect. Instead, a subject’s average value does not

bANOVA wANOVA

(a) (b) (c)

S S0t 1046 1046 1046 706
SSeroup 219 219 219 219

S Sind - 814 11 238
SSerror 827 13 816 238

Fig. 3: Visualizations of three types
of ITE distributions in a two-arm

. . Fig. 4: Synthetic data results of Experi-
experlment with ¥ as the outhme ment 1 in Section [3] The table gives the
variable and W the treatment assign- Sum of Squares (SS) for a bANOVA and

ment indicator. (a) all ITEs equal the A NOVA for three possible ITE dis-
ATE (b) all ITEs cross through GM tributions as visualized in Figure @
(¢c) counterfactuals equal the group

mearn.
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say much about the outcome values, and there exists an interaction between
treatment and subject that cannot be explained by observed information.

In scenario (c), the total variance decreases to 706 because 100 out of 200
outcome values are set to the group mean. These 100 group mean values all
have a shorter distance to the GM than the original values and therefore, the
total variance decreases. Yet, the ATE in scenario (c) is still the same, as can be
seen from the between-subjects variance of 219. Furthermore, the within-subjects
variance is equally divided between an effect of subjects and an interaction effect.
In other words, half of the variance can be explained by consistent differences
between individuals, while the other half of the variance is non-systematic and
therefore unexplained.

4 Experiment 2: Z is a time-variant, lower-level covariate

In this experiment, we demonstrate that whether or not Z is a prognostic
factor or effect modifier, high-quality individual-level representation of lower-level
measurements can discover the variance distributions of these measurements.
However, poorly chosen aggregation functions interfere with assumptions about
the presence of prognostic factors and effect modifiers.

4.1 Experimental setup

We let covariate Z be time-varying, constructed as a random walk of T = 20 steps
over nodes h € H = {a,b,c,d, e}, where P(z! = h | zf_l = h') = 1/5. In other
words, per individual, covariate Z is modeled as an event-sequence of length T'
where the next event value is independent of the current event. We model the
treatment assignment variable as a time-variant variable where every possible
treatment value is a measurement occasion. Concretely, this means we set the
treatment assignment value as the time indicator: w! + t.

Next, we generate y! = N'(10 +v!,0.1), where we let v} = aw! + (2! + Mwfz!
be a linear function of the time indicator ¢ (through w!) and the integer position
of covariate value 2! (i.e., a = 1, b = 2, etc; assumptions underlying linear
regression are slightly violated, but do not influence the conclusions of our
experiment). The aim is to discover exceptional subgroups of individuals using
individual-level representations of the lower-level event sequences. We create
various additional lower-level and individual-level noise variables. We use the
beam search algorithm and construct 2 x 2 x 2 scenarios: all combinations of
Ztype € {prognostic, effect modification}, Aggfunc € {imperfect, perfect} and
Eval € {average, increase}.

The simulation parameter Ztype refers to whether variable Z acts as a
prognostic factor or as an effect modifier. To let Z have a prognostic effect,
a=(¢=1and A =0 (see visualization in Figure [5a). There are main effects of
time and variable Z, but no interaction effect. In contrast, Figure [b| displays the
scenario where Z is an effect modifier without main effects; « = ( =0 and A = 1.
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Effect of time (W) and covariate (Z) on upsilon Effect of time (W) and covariate (Z) on upsilon

Fig. 5: Visualizations of the relation between the time indicator ¢ (through w!,
x-axis), covariate values z (colors, from low (event type a, purple) to high (event
type e, orange)) and v. Every individual ¢ walks a path through these dots from
left to right. (a) Z acts as a prognostic factor (b) Z acts as an effect modifier,
there are no main effects.

To represent lower-level measurements at the level of the individual, we
compare two approaches for Aggfunc. In the perfect scenario, we know the
ground truth values v} and average those using fsum (v}, ...,v) = Zthl vl and
finer (U}, ., 0F) = vl — v}, Alternatively, we construct an imperfect scenario that
reflects handling event-sequences in practice: by counting the average frequency
of each event type, and by determining the average index location. The idea is
that high frequency values capture individuals with highly repetitive sequences
(i.e., the random walk stays at the same node; the path through Figure [5| follows
the same color) whereas the index location reflects where in the random walk,
on average, a certain node is visited (e.g., more in the start or at the end of the
sequence). The resulting 10 features are denoted as Jireq, and figx, for h € H.

Third, we evaluate the exceptionality of individuals in two ways. If Fval =
average, discover subgroups of individuals with exceptionally high, average
outcome values. We quantify exceptionality with quality measure ¢, = (u5C —
1) /se(uY). Here, p¢ = 1/n%91/T Y, o >, ¥l is the average outcome
value of the individuals covered by the subgroup, se(u°%) is its standard error,
and pP is the average outcome in the entire dataset D. In contrast, if Fval =
increase, we discover subgroups of individuals with an exceptional increase

in outcome between ¢t = 1 and t = T. Here, ¢y = (5% — 67)/se(0°%) with
03¢ =1/n% 3csa (i — ui).

4.2 Experimental results

For all 8 simulation scenarios, Table [I] presents the description of the most excep-
tional subgroup. First, for the scenario where Eval = ¢,,, Ztype = prognostic,
and Aggfunc = imperfect, the subgroups covers individuals with low frequency
of event type a, low frequency of event type b and high frequency of event type e.
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Table 1: Description of the most exceptional subgroup, discovered with ¢,
(exceptionally high average outcome) and gy (exceptionally high increase in
outcome). Aggregation of event-sequences to single values per individual is done
with perfect, ground-truth knowledge and imperfect knowledge. Covariate Z acts
as a prognostic factor or effect modifier.

Aggfunc
FEval Ztype imperfect perfect
prognostic frreq, <3N frreq, 2> 4 A fireq, <5 foum € [5,22]
Pi effect modification fiax, > 11 A fiax, < 10 foum € [—134, —25]
prognostic fidx, > 10.5 A fiax, < 9.5 finer = 3

P9 effect modification frreq, < 3 A fireq, = 4 A fiaxe < 14 finer € [—38, 29

These are individuals with event sequences that stay close to the orange path in
Figure [5a} the v values are large, and therefore, the outcome values are large.

In contrast, when Fval = @ipetq, individuals with an exceptional increase
in outcome start their sequence with event type a (fiax, < 9.5) and end their
sequence with event type e (fiax, > 10.5) (see Table|l} third row). In other words,
they start at purple and cross through to end at orange (Figure .

The reversed line of reasoning holds if Ztype = effect modification, as depicted
in Figure Then, discovering individuals with high outcome values (p,,) requires
crossing through colors and hence, the usage of figx (second row in Table
whereas individuals with a high increase (py) need to stay close to the purple
color (event type a) as long as possible (freq, > 4).

Interestingly, if we have direct access to v, we can construct an aggregation
function fsum that works for discovering individuals with high outcome values
() independent of whether Z is a prognostic factor or effect modifier. This can
be seen in the right column in Table [I} fsum is used in both rows corresponding
to . Similarly, we can construct fi,er, which is used to discover subgroups with
a high increase over time (py), independent of covariate role of Z. These results
show that the closer our aggregation functions resemble the true multivariate,
multilevel nature of the data, the less we need to worry about making the correct
assumptions about whether Z is a prognostic factor or effect modifier.

5 Discussion and Conclusion

The aim of this paper is to unravel patient population heterogeneity by providing
insights into the prognostic and effect modification behavior of covariate Z in
the context of estimating causal treatment effects that vary across subgroups in
the population. We do this by designing two controlled experiments where we
temporarily disregard the fundamental problem of causal inference that factual
and counterfactual outcomes cannot be observed together. We consider linear
relations between a treatment assignment variable W, a covariate Z and an
outcome variable Y. Treatment assignment variable W is modeled as a time-
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variant variable where every possible treatment value is a measurement occasion.
As such, we create a nested, hierarchical data structure and studied the relation
between individual (lower-level) and average (higher-level) treatment effects.

In Experiment 1 in Section [3| covariate Z is an individual-level covariate.
Our findings demonstrate that variance distributions in a traditional two-arm
experiment as measured by bANOVA (most-left column in Table [4]) are the same
as those in a wANOVA with covariate Z being an effect modifier (scenario (b) in
Figure[3|and Table . This means that a bANOVA without additional covariates
assumes a worst-case scenario for underlying ITE distributions. Indeed, in the
real world, including covariates Z to control for prognostic and effect modification
behavior reduces left-over variance and improves precision in estimating 7 [T9/50]:
we would move from scenario (b) to scenario (c) to scenario (a) in Table

Remark that in the real-world, it is non-trivial to distinguish prognostic
factors from effect modifiers. Consequently, is can be difficult to know how to
include Z in the model. For instance, when assuming linear causal relations,
Z should be included as a main effect to control for confounding effects and
to control for prognostic effects, and Z should additionally be included in an
interaction term to control for effect modification behavior. With many variables,
the number of model parameters inflates quickly. In the domain of uplift modeling,
the problem of causal inference is circumvented by fitting multiple models: one for
each treatment group. An individual’s ITE is then estimated by comparing the
factual outcome with the predicted counterfactual [38/39]. In fact, the scenario in
Figure [3c| represents a baseline double-model where the simplest counterfactual
model is the group average (7*). More advanced methods directly estimate the
net difference between two treatment groups [20/43].

In Experiment 2 in Section[d] Z is a time-variant, lower-level covariate. Our
findings demonstrate that the quality of our choice on how to create individual-
level representations of lower-level measurements is determined by our assumption
about the nature of the lower-level covariate Z. With poorly chosen aggregation
functions, assumptions regarding the effect of Z on ITEs influences results. For
instance, in our experiment, aggregation functions based on frequency perform
well when Z is a prognostic factor and the average effect is based on an estimate
of the mean, or when Z is an effect modifier and the average effect is based on an
estimate of the slope (first and last row in left column in Table . Aggregation
functions based on location work well with reversed relations between Z and
the average treatment effect. However, if the aggregation functions are close to
the ground truth, the nature of Z does not matter for whether or not average
treatment effects can be unraveled. For instance, aggregation function fg,, works
well for discovering average effects based on estimates of the mean, whether or
not Z is a progunostic factor or effect modifier (first two rows in right column in
Table . Overall, the better the quality of individual-level representations, the
less our results will interfere with assumptions about the role of covariate Z. We
then do not need to rely on the reliability of those assumptions.
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